Skip to main content
Log in

The Effect of Boron Addition on the Structure and Mechanical Properties of Cu–Al–Ni–B Alloys with a Thermoelastic Martensitic Transformation

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

For the first time, data on the peculiarities of the structure of the Cu–Al–Ni–(B) alloys differing in the contents of alloying elements, namely, containing 10–14 wt % aluminum, 3, 4, 4.5 wt % nickel, and 0.02–0.3 wt % boron were obtained using optical, scanning, and transmission microscopy and X-ray diffraction analysis along with measurements of tensile mechanical properties. The effect of boron on the grain size, structure, phase composition, and mechanical properties of the shape-memory alloys has been studied. The localization of aluminum boride precipitates in the structure has been studied, and the effect of grain growth retardation in (α + β) and β Cu–Al–Ni–B alloys in both cast and heat-treated states has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. K. Otsuka, K. Shimizu, Yu. Suzuki, and Yu. Sekiguti, Shape Memory Alloys, Ed. by H. Funakobo (Kyoto, 1984).

    Google Scholar 

  2. G. V. Kurdyumov and L. G. Khandros, “On the thermoelastic equilibrium at martensitic transformations,” Dokl. Nauk SSSR 66, 211–214 (1949).

    CAS  Google Scholar 

  3. H. Warlimont and L. Delaey, “Martensitic transformations in copper-silver and gold based alloys,” Progr. Mater. Sci. 18, 1–157 (1974).

    Google Scholar 

  4. V. A. Likhachev, S. L. Kuz’min, and Z. P. Kamentseva, Shape Memory Effect (Leningrad. Gos. Univ., Leningrad, 1987) [in Russian].

    Google Scholar 

  5. P. Sedlák, H. Seiner, M. Landa, V. Novák, P. Šittner, and L. Mañosa, “Elastic constants of bcc austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy,” Acta Mater. 53, 3643–3661 (2005). https://doi.org/10.1016/j.actamat.2005.04.013

    Article  CAS  Google Scholar 

  6. L. Mañosa, S. Jarque-Farnos, E. Vives, and A. Planes, “Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys,” Appl. Phys. Lett. 103, 211904 (2013). https://doi.org/10.1063/1.4832339

    Article  CAS  Google Scholar 

  7. R. Dasgupta, “A look into Cu-based shape memory alloys: Present scenario and future prospects,” J. Mater. Res. 29, 1681–1698 (2014). https://doi.org/10.1557/jmr.2014.189

    Article  CAS  Google Scholar 

  8. V. N. Khachin, S. A. Muslov, V. G. Pushin, and Yu. I. Chumlyakov, “Anomalies in the elastic properties of TiNi–TiFe single crystals,” Sov. Phys. Dokl. 32, 606–609 (1987).

    Google Scholar 

  9. V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616 (2019). https://doi.org/10.3390/ma12162616

    Article  CAS  Google Scholar 

  10. A. V. Lukyanov, V. G. Pushin, N. N. Kuranova, A. E. Svirid, A. N. Uksusnikov, Yu. M. Ustyugov, and D. V. Gunderov, “Effect of the thermomechanical treatment on structural and phase transformations in Cu–14Al–3Ni shape memory alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 119, 374–382 (2018). https://doi.org/10.1134/S0031918X18040142

    Article  CAS  Google Scholar 

  11. A. E. Svirid, A. V. Luk’yanov, V. G. Pushin, E. S. Belosludtseva, N. N. Kuranova, and A. V. Pushin, “Effect of the temperature of isothermal upsetting on the structure and the properties of the shape memory Cu–14 wt % Al–4 wt % Ni alloy,” Phys. Met. Metallogr. 120, 1159–1165 (2019). https://doi.org/10.1134/S0031918X19120159

    Article  CAS  Google Scholar 

  12. A. E. Svirid, V. G. Pushin, N. N. Kuranova, E. S. Belosludtseva, A. V. Pushin, and A. V. Lukyanov, “The effect of plastification of Cu–14Al–4Ni alloy with the shape memory effect in high-temperature isothermal precipitation,” Tech. Phys. Lett. 46, 118–121 (2020). https://doi.org/10.1134/S1063785020020145

    Article  Google Scholar 

  13. A. E. Svirid, A. V. Lukyanov, V. G. Pushin, N. N. Kuranova, V. V. Makarov, A. V. Pushin, and A. N. Uksusnikov, “Application of isothermal upset for megaplastic deformation of Cu–Al–Ni β alloys,” Tech. Phys. 90, 1044–1050 (2020). https://doi.org/10.1134/S1063784220070245

    Article  Google Scholar 

  14. A. E. Svirid, V. G. Pushin, N. N. Kuranova, V. V. Makarov, and A. N. Uksusnikov, “The effect of heat treatment on the structure and mechanical properties of nanocrystalline Cu–14Al–3Ni alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 122, 883–890 (2021). https://doi.org/10.1134/S0031918X21090131

    Article  CAS  Google Scholar 

  15. V. Pushin, N. Kuranova, A. Svirid, A. Uksusnikov, and Yu. Ustyugov, “Design and development of high-strength and ductile ternary and multicomponent eutectoid Cu-Based shape memory alloys: Problems and perspectives,” Metals 12, 1289 (2022). https://doi.org/10.3390/met12081289

    Article  CAS  Google Scholar 

  16. S. N. Saud, E. Hamzah, T. Abubakar, and H. R. Bakhshe-shi-Rad, “Correlation of microstructural and corrosion characteristics of quaternary shape memory alloys Cu–Al–Ni–X (X = Mn or Ti),” Trans. Nonferrous Met. Soc. China 25, 1158–1170 (2015). https://doi.org/10.1016/s1003-6326(15)63711-6

    Article  CAS  Google Scholar 

  17. Z. Li, Z. Y. Pan, N. Tang, Y. B. Jiang, N. Liu, M. Fang, and F. Zheng, “Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy,” Mater. Sci. Eng., A 417, 225–229 (2006). https://doi.org/10.1016/j.msea.2005.10.051

    Article  CAS  Google Scholar 

  18. G. Lojen, I. Anžel, A. Kneissl, A. Križman, E. Unterweger, B. Kosec, and M. Bizjak, “Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons,” J. Mater. Process. Technol. 162163, 220–229 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.196

    Article  CAS  Google Scholar 

  19. F. C. Lovey, A. M. Condó, J. Guimpel, and M. J. Yacamán, “Shape memory effect in thin films of a Cu–Al–Ni alloy,” Mater. Sci. Eng., A 481482, 426–430 (2008). https://doi.org/10.1016/j.msea.2007.01.175

    Article  CAS  Google Scholar 

  20. Y. S. Sun, G. W. Lorimer, and N. Ridley, “Microstructure and its development in Cu–Al–Ni alloys,” Metall. Trans. A 21 (2), 575–588 (1990). https://doi.org/10.1007/bf02671930

    Article  Google Scholar 

Download references

Funding

The synthesis of the boron-containing alloys and their study in the cast and heat-treated states was financially supported by the Russian Science Foundation, project no. 22-72-00056 (https://rscf.ru/project/22-72-00056/, IMP UB RAS). Studies of forged boron-free alloys were performed in terms of state assignment of the Ministry of Science and Higher Education (theme Structure, no. 122021000033-2). The study was performed using equipment available in the Collective Access Center Testing Center for Nanotechnologies and Advanced Materials at the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences. We thank D.I. Davydov for the alloy preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Svirid.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svirid, A.E., Kuranova, N.N., Makarov, V.V. et al. The Effect of Boron Addition on the Structure and Mechanical Properties of Cu–Al–Ni–B Alloys with a Thermoelastic Martensitic Transformation. Phys. Metals Metallogr. 124, 504–513 (2023). https://doi.org/10.1134/S0031918X23600549

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600549

Keywords:

Navigation