Skip to main content
Log in

Structure and Properties of New Wrought Al–Cu–Y- and Al–Cu–Er-Based Alloys

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structure and properties of new wrought aluminum Al–4.5Cu–1.6Y–0.9Mg–0.6Mn–0.2Zr–0.1Ti–0.15Fe–0.15Si and Al–4.0Cu–2.7Er–0.8Mg–0.8Mn–0.2Zr–0.1Ti–0.15Fe–0.15Si alloys are studied. After homogenization and rolling, the structure is formed, which consists of the aluminum-based solid solution strengthened with fine Al3(Zr,Er), Al3(Zr,Y), and Al20Cu2Mn3 phase particles and compact thermally stable phases of solidification origin 1–5 µm in size. The recrystallization after rolling occurs at temperatures above 350°С. As the annealing temperature increases from 400 to 550°С, the recrystallized grain size increases from 6–8 to 10–12 µm. At temperatures of 150–180°С, the hardness increases after 2-h annealing; this is related to the occurrence of aging, and the analogous effect was observed for the cast alloys of these systems. The yield strength of the Y-containing alloy subjected to 6-h annealing at 150°С is 405 MPa; in this case, the relative elongation is 4.5%. As the annealing temperature increases to 210°С, the yield strength of the both alloys decreases to 300 MPa, whereas the relative elongation remains unchanged. In the case of the alloys quenched after rolling and subsequently aged at 210°С, the yield strength of 264–266 MPa and ultimate tensile strength of 356–365 MPa are reached at a relative elongation of 11.3–14.5%. As a result, the new wrought Al–Cu–Y- and Al–Cu–Er-based alloys provide competition for the available industrial alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. GOST (State Standard) 1583–93: Aluminum Casting Alloys. Specifications (Izd. Standartov, Moscow, 1997) [in Russian].

  2. M. V. Glazoff, V. S. Zolotorevsky, and N. A. Belov, Casting Aluminum Alloys (Elsevier, Amsterdam, 2007).

    Google Scholar 

  3. GOST (State Standard) 4784–97: Aluminum and Wrought Aluminum Alloys. Grades (Izd. Standartov, Moscow, 2000) [in Russian].

  4. I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  5. V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27 (4), 193–198 (2014).

    Article  Google Scholar 

  6. V. S. Zolotorevskii, A. V. Pozdnyakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).

    Article  Google Scholar 

  7. D. G. Eskin, Suyitno, and L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminum alloys,” Prog. Mat. Sci. 49, 629–711 (2004).

    Article  CAS  Google Scholar 

  8. N. A. Belov, E. A. Naumova, T. A. Bazlova, and E. V. Alekseeva, “Structure, phase composition, and strengthening of cast Al–Ca–Mg–Sc alloys,” Phys. Met. Metallogr. 117, 188–194 (2016).

    Article  CAS  Google Scholar 

  9. P. K. Shurkin, N. A. Belov, A. F. Musin, and M. E. Samoshina, “Effect of calcium and silicon on the character of solidification and strengthening of the Al–8% Zn–3% Mg alloy,” Phys. Met. Metallogr. 121, 135–142 (2020).

    Article  CAS  Google Scholar 

  10. N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519521, 395–400 (2006).

    Article  Google Scholar 

  11. N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).

    Article  CAS  Google Scholar 

  12. A. V. Pozdniakov and R. Yu. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34 (12), 1489–1496 (2018).

    Article  CAS  Google Scholar 

  13. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 476–482 (2020).

    Article  CAS  Google Scholar 

  14. A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).

    Article  CAS  Google Scholar 

  15. T. K. Akopyan, N. V. Letyagin, N. A. Belov, A. N. Koshmin, and D. Sh. Gizatulin, “Analysis of the microstructure and mechanical properties of a new wrought alloy based on the ((Al) + Al4(Ca,La)) eutectic,” Phys. Met. Metallogr. 121, 914–919 (2020).

    Article  CAS  Google Scholar 

  16. A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, 537–542 (2017).

    Article  CAS  Google Scholar 

  17. A. V. Pozdniakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).

    Article  CAS  Google Scholar 

  18. A. V. Pozdniakov and R. Yu. Barkov, “Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity,” J. Mater. Sci. Technol. 36, 1–6 (2020).

    Article  Google Scholar 

  19. Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd. 610, 27–34 (2014).

    Article  CAS  Google Scholar 

  20. S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).

    Article  CAS  Google Scholar 

  21. S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. Alloys Compd. 574, 92–97 (2013).

    Article  CAS  Google Scholar 

  22. Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).

    Article  Google Scholar 

  23. Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).

    Article  CAS  Google Scholar 

  24. A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakov-tseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).

    Article  CAS  Google Scholar 

  25. M. Song, K. Du, Z. Y. Huang, H. Huang, Z. R. Nie, and H. Q. Ye, “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater. 81, 409–419 (2014).

    Article  CAS  Google Scholar 

  26. H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).

    Article  CAS  Google Scholar 

  27. S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).

    Article  CAS  Google Scholar 

  28. R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).

    Article  CAS  Google Scholar 

  29. R. Yu. Barkov, A. G. Mochugovskiy, M. G. Khomutov, and A. V. Pozdniakov, “Effect of Zr and Er small additives on the phase composition and mechanical properties of Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122, 161–168 (2021).

    Article  CAS  Google Scholar 

  30. R. Yu. Barkov, A. S. Prosviryakov, M. G. Khomutov, and A. V. Pozdnyakov, “Effect of the Zr and Er content on the structure and properties of the Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122, 614–620 (2021).

    Article  CAS  Google Scholar 

  31. M. Li, H. Wang, Z. Wei, and Z. Zhu, “The effect of Y on the hot-tearing resistance of Al–5 wt % Cu based alloy,” Mater. Des. 31, 2483–2487 (2010).

    Article  CAS  Google Scholar 

  32. A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).

    Article  CAS  Google Scholar 

  33. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Techol. 36 (4), 453–459 (2020).

    Article  CAS  Google Scholar 

  34. S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, A. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10 (15), 5345–5353 (2020).

    Article  CAS  Google Scholar 

  35. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121, 1227–1232 (2020).

    Article  CAS  Google Scholar 

  36. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121, 495–499 (2020).

    Article  CAS  Google Scholar 

  37. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121, 1002–1007 (2020).

    Article  CAS  Google Scholar 

  38. S. M. Amer, R. Yu. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, Fiz. Met. Metalloved. (in press).

  39. L. Zhang, P. J. Masset, X. Tao, G. Huang, H. Luo, L. Liu, and Z. Jin, “Thermodynamic description of the Al–Cu–Y ternary system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 35, 574–579 (2011).

    Article  CAS  Google Scholar 

  40. L. G. Zhang, L. B. Liu, G. X. Huang, H. Y. Qi, B. R. Jia, and Z. P. Jin, “Thermodynamic assessment of the Al–Cu–Er system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 527–534 (2008).

    Article  CAS  Google Scholar 

  41. GOST (State Standard) 21631–76: Sheets of Aluminum and Aluminum Alloys. Specifications (Standartinform, Moscow, 2008) [in Russian].

  42. GOST (State Standard) R 51834–2001: Extruded Aluminum Alloy Bars of High Strength and Improved Ductility. Specifications (Izd. Standartov, Moscow, 2002) [in Russian].

Download references

ACKNOWLEDGMENT

The researcher S.M. Amer is funded by a partial scholarship from the Ministry of Higher Education of the Arab Republic of Egypt.

Funding

This study was supported by the Russian Science Foundation, project no. 19-79-10242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pozdniakov.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, S.M., Barkov, R.Y., Prosviryakov, A.S. et al. Structure and Properties of New Wrought Al–Cu–Y- and Al–Cu–Er-Based Alloys. Phys. Metals Metallogr. 122, 915–922 (2021). https://doi.org/10.1134/S0031918X21080020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21080020

Keywords:

Navigation