Skip to main content
Log in

Apatinib Suppressed Macrophage-Mediated Malignant Behavior of Hepatocellular Carcinoma Cells via Modulation of VEGFR2/STAT3/PD-L1 Signaling

  • MOLECULAR BIOLOGY OF THE CELL
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the most frequently diagnosed primary liver tumor worldwide. Tumor-associated macrophages (TAMs) usually have a similar phenotype to M2-like macrophages and can participate in tumor progression by secreting cytokines to suppress the immune response and activity of tumor-infiltrating lymphocytes. We investigated the role of M2 macrophages in HCC progression and explored the effects of vascular endothelial growth factor receptor 2 inhibitor—apatinib. As a cellular model of HCC, Hepb3 cell line was used. M2 macrophages were obtained by differentiation of THP-1 cells. The Transwell chamber was used to co-culture M2 macrophages and Hepb3 cells. CCK-8 and EdU assays were conducted to measure cell viability and proliferation capacity. Transwell migration assay was performed to estimate cellular metastatic potential. Cytokine expression levels were assessed by ELISA. Western blotting was used to characterize activation of the VEGFR2/STAT3/PD-L1 axis. It has been shown that co-culture with M2 macrophages increased viability, cytokine production, promoted proliferation, invasion, and migration of Hepb3 cells. The secretion of TGF-β1, IL-6, MMP-9, and VEGF was significantly increased after co-culture. In contrast apatinib suppressed M2 macrophage-induced proliferation, cell viability, invasion, and migration of Hepb3 cells. Moreover, apatinib markedly decreased expression levels of p-VEGFR2, p-STAT3, and PD-L1 in Hepb3 cells under the co-culture conditions. In conclusion, apatinib treatment can suppress TAMs-mediated malignant behavior of HCC cells via modulation of the VEGFR2/STAT3/PD-L1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ferlay J., Colombet M., Soerjomataram I., Parkin D.M., Piñeros M., Znaor A., Bray F. 2021. Cancer statistics for the year 2020: an overview. Int. J. Cancer. 149, 778–789.

    Article  CAS  Google Scholar 

  2. Caines A., Selim R., Salgia R. 2020. The Changing global epidemiology of hepatocellular carcinoma. Clin Liver Dis. 24, 535–547.

    Article  PubMed  Google Scholar 

  3. Pascual S., Herrera I., Irurzun J. 2016. New advances in hepatocellular carcinoma. World J. Hepatol. 8, 421–438.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Laplane L., Duluc D., Bikfalvi A., Larmonier N., Pradeu T. 2019. Beyond the tumour microenvironment. Int. J. Cancer. 145, 2611–2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yin Y., Yao S., Hu Y., Feng Y., Li M., Bian Z., Zhang J., Qin Y., Qi X., Zhou L., Fei B., Zou J., Hua D., Huang Z. 2017. The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6. Clin. Cancer Res. 23, 7375–7387.

    Article  CAS  PubMed  Google Scholar 

  6. Qian B.Z., Pollard J.W. 2010. Macrophage diversity enhances tumor progression and metastasis. Cell. 141, 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pittet M.J., Michielin O., Migliorini D. 2022. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421.

    Article  PubMed  Google Scholar 

  8. Martínez V.G., Rubio C., Martínez-Fernández M., Segovia C., López-Calderón F., Garín M.I., Teijeira A., Munera-Maravilla E., Varas A., Sacedón R., Guerrero F., Villacampa F., de la Rosa F., Castellano D., López-Collazo E., Paramio J.M., Vicente Á., Dueñas M. 2017. BMP4 induces M2 macrophage polarization and favors tumor progression in bladder cancer. Clin. Cancer Res. 23, 7388–7399.

    Article  PubMed  Google Scholar 

  9. Lu H., Clauser K.R., Tam W.L., Fröse J., Ye X., Eaton E.N., Reinhardt F., Donnenberg V.S., Bhargava R., Carr S.A., Weinberg R.A. 2014. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol. 16, 1105–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daurkin I., Eruslanov E., Stoffs T., Perrin G.Q., Algood C., Gilbert S.M., Rosser C.J., Su L.M., Vieweg J., Kusmartsev S. 2011. Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res. 71, 6400–6409.

    Article  CAS  PubMed  Google Scholar 

  11. Xiao P., Long X., Zhang L., Ye Y., Guo J., Liu P., Zhang R., Ning J., Yu W., Wei F., Yu J. 2018. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of tumor-associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells. Oncoimmunology. 7, e1440166.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bellmunt J., Powles T., Vogelzang N.J. 2017. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: The future is now. Cancer Treat. Rev. 54, 58–67.

    Article  CAS  PubMed  Google Scholar 

  13. Llovet J.M., Castet F., Heikenwalder M., Maini M.K., Mazzaferro V., Pinato D.J., Pikarsky E., Zhu A.X., Finn R.S. 2022. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 19, 151–172.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H. 2015. Apatinib for molecular targeted therapy in tumor. Drug. Des. Dev. Ther. 9, 6075-6081.

    Article  CAS  Google Scholar 

  15. Scott A.J., Messersmith W.A., Jimeno A. 2015. Apatinib: a promising oral antiangiogenic agent in the treatment of multiple solid tumors. Drugs Today (Barc.). 51, 223–229.

    Article  CAS  PubMed  Google Scholar 

  16. Chen X., Qiu T., Zhu Y., Sun J., Li P., Wang B., Lin P., Cai X., Han X., Zhao F., Shu Y., Chang L., Jiang H., Gu Y. 2019. A single-arm, phase II study of apatinib in refractory metastatic colorectal cancer. Oncologist. 24, 883–e407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao S., Ren S., Jiang T., Zhu B., Li X., Zhao C., Jia Y., Shi J., Zhang L., Liu X., Qiao M., Chen X., Su C., Yu H., Zhou C., Zhang J., Camidge D.R., Hirsch F.R. 2019. Low-dose apatinib optimizes tumor microenvironment and potentiates antitumor effect of PD-1/PD-L1 blockade in lung cancer. Cancer Immunol. Res. 7, 630–643.

    Article  CAS  PubMed  Google Scholar 

  18. Li L, Yu R, Cai T, Chen Z, Lan M, Zou T, Wang B, Wang Q, Zhao Y, Cai Y. 2020. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int. Immunopharmacol. 88, 106939.

    Article  CAS  PubMed  Google Scholar 

  19. Saraswati S., Alhaider A., Abdelgadir A.M., Tanwer P., Korashy H.M. 2019. Phloretin attenuates STAT-3 activity and overcomes sorafenib resistance targeting SHP-1-mediated inhibition of STAT3 and Akt/VEGFR2 pathway in hepatocellular carcinoma. Cell Commun. Signal. 17, 127.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wen S., Shao G., Zheng J., Zeng H., Luo J., Gu D. 2019. Apatinib regulates the cell proliferation and apoptosis of liver cancer by regulation of VEGFR2/STAT3 signaling. Pathol. Res. Pract. 215, 816–821.

    Article  CAS  PubMed  Google Scholar 

  21. Anderson N.M., Simon M.C. 2020. The tumor microenvironment. Curr. Biol. 30, R921–r925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ngambenjawong C., Gustafson H.H., Pun S.H. 2017. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Delivery Rev. 114, 206–221.

    Article  CAS  Google Scholar 

  23. DeNardo D.G., Ruffell B. 2019. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mao X., Xu J., Wang W., Liang C., Hua J., Liu J., Zhang B., Meng Q., Yu X., Shi S. 2021. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer. 20, 131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Laoui D., Van Overmeire E., De Baetselier P., Van Ginderachter J.A., Raes G. 2014. Functional relationship between tumor-associated macrophages and macrophage colony-stimulating factor as contributors to cancer progression. Front Immunol. 5, 489.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fantuzzi L., Tagliamonte M., Gauzzi M.C., Lopalco L. 2019. Dual CCR5/CCR2 targeting: opportunities for the cure of complex disorders. Cell. Mol. Life Sci. 76, 4869–4886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Campagnolo L., Telesca C., Massimiani M., Stuhlmann H., Angelico M., Lenci I., Manzia T.M., Tariciotti L., Lehmann G., Baiocchi L. 2016. Different expression of VEGF and EGFL7 in human hepatocellular carcinoma. Dig. Liver Dis. 48, 76–80.

    Article  CAS  PubMed  Google Scholar 

  28. Bhoori S., Mazzaferro V. 2020. Combined immunotherapy and VEGF-antagonist in hepatocellular carcinoma: a step forward. Lancet Oncol. 21, 740–741.

    Article  PubMed  Google Scholar 

  29. Hu X., Zhang J., Xu B., Jiang Z., Ragaz J., Tong Z., Zhang Q., Wang X., Feng J., Pang D., Fan M., Li J., Wang B., Wang Z., Zhang Q., Sun S., Liao C. 2014. Multicenter phase II study of apatinib, a novel VEGFR inhibitor in heavily pretreated patients with metastatic triple-negative breast cancer. Int. J. Cancer. 135, 1961–1969.

    Article  CAS  PubMed  Google Scholar 

  30. Hu X., Cao J., Hu W., Wu C., Pan Y., Cai L., Tong Z., Wang S., Li J., Wang Z., Wang B., Chen X., Yu H. 2014. Multicenter phase II study of apatinib in non-triple-negative metastatic breast cancer. BMC Cancer. 14, 820.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang Q., Gao J., Di W., Wu X. 2020. Anti-angiogenesis therapy overcomes the innate resistance to PD-1/PD-L1 blockade in VEGFA-overexpressed mouse tumor models. Cancer Immunol. Immunother. 69, 1781–1799.

    Article  CAS  PubMed  Google Scholar 

  32. Zheng B., Ren T., Huang Y., Guo W. 2018. Apatinib inhibits migration and invasion as well as PD-L1 expression in osteosarcoma by targeting STAT3. Biochem. Biophys. Res. Commun. 495, 1695–1701.

    Article  CAS  PubMed  Google Scholar 

  33. Cai X., Wei B., Li L., Chen X., Liu W., Cui J., Lin Y., Sun Y., Xu Q., Guo W., Gu Y. 2020. Apatinib enhanced anti-PD-1 therapy for colon cancer in mice via promoting PD-L1 expression. Int. Immunopharmacol. 88, 106858.

    Article  CAS  PubMed  Google Scholar 

  34. Kambhampati S., Bauer K.E., Bracci P.M., Keenan B.P., Behr S.C., Gordan J.D., Kelley R.K. 2019. Nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh class B cirrhosis: Safety and clinical outcomes in a retrospective case series. Cancer. 125, 3234–3241.

    Article  CAS  PubMed  Google Scholar 

  35. El-Khoueiry A.B., Sangro B., Yau T., Crocenzi T.S., Kudo M., Hsu C., Kim T.Y., Choo S.P., Trojan J., Welling T.H.R., Meyer T., Kang Y.K., Yeo W., Chopra A., Anderson J., Dela Cruz C., Lang L., Neely J., Tang H., Dastani H.B., Melero I. 2017. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 389, 2492–2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pardoll D.M. 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 12, 252–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bu L.L., Yu G.T., Wu L., Mao L., Deng W.W., Liu J.F., Kulkarni A.B., Zhang W.F., Zhang L., Sun Z.J. 2017. STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J. Dent. Res. 96, 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xie C., Zhou X., Liang C., Li X., Ge M., Chen Y., Yin J., Zhu J., Zhong C. 2021. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. J. Exp. Clin. Cancer Res. 40, 266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

Funding

This research was funded by Chen Xiao-Ping Foundation for the Development of Science and Technology of Hubei Province (no. CXPJJH12000001-2020206).

Author information

Authors and Affiliations

Authors

Contributions

Tao Yin and Changbo Fu are co-first authors. Tao Yin, Changbo Fu and Dongde Wu designed the research plan. Tao Yin, Changbo Fu, Dongde Wu, Lei Nie, Hu Chen and Yang Wang performed the experiments. Tao Yin and Changbo Fu wrote the manuscript.

Corresponding author

Correspondence to D. D. Wu.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Ethical approval. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent. Not applicable.

Data availability statement. The data used to support the findings of this study are available from the corresponding author upon request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, T., Fu, C.B., Wu, D.D. et al. Apatinib Suppressed Macrophage-Mediated Malignant Behavior of Hepatocellular Carcinoma Cells via Modulation of VEGFR2/STAT3/PD-L1 Signaling. Mol Biol 57, 714–723 (2023). https://doi.org/10.1134/S0026893323040180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323040180

Keywords:

Navigation