Skip to main content
Log in

BDNF Prodomain Inhibits Neurotransmitter Quantal Release in Mouse Motor Synapses with the Necessary Participation of Sortilin and Adenosine A1-Receptors

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Brain neurotrophin (BDNF) is synthesized by proteolysis of proneurotrophin to form mature BDNF and the prodomain, whose regulatory activity on neuromuscular transmission is just beginning to be studied. At motor synapses, the BDNF prodomain has an inhibitory effect, stimulating GIRK potassium channels via activation of p75 receptors. The aim of this work was to study the initiation and implementation of the mechanism of inhibitory action of the BDNF prodomain in mature motor synapses of the mouse diaphragm. Microelectrodes were used to record spontaneous (miniature) and multiquantal endplate potentials evoked by stimulation of motor axons (MEPPs and EPPs, respectively). Using selective antagonists, it was revealed that the inhibitory effect of the BDNF prodomain on synaptic transmission requires the participation of sortilin, but not TrkB receptors. Stimulation of GIRK induced by the BDNF prodomain requires the participation of synaptic metabotropic receptors, which ensure the action of βγ-subunits of Gi proteins on GIRK. Using selective inhibitors, it was found that M2 cholinergic receptors and P2Y13 purinoceptors negatively regulate presynaptic L-type calcium channels, but these metabotropic receptors are not functionally related to the action of the BDNF prodomain. It turned out that the inhibition of quantal release of acetylcholine in motor synapses caused by BDNF prodomain requires the activity of the adenosine A1-receptors only. In addition, when pannexin 1 was pharmacologically blocked by probenecid, the BDNF prodomain lost its inhibitory effect on neuromuscular transmission. Thus, BDNF prodomain-induced inhibition of quantal neurotransmitter release in mouse motor synapses requires the participation of sortilin and endogenous activation of adenosine A1-receptors, which requires the functioning of pannexins 1, which most likely provide an additional source of synaptic ATP to the vesicular one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Castrén E, Antila H (2017) Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 22(8): 1085–1095.https://doi.org/10.1038/mp.2017.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hurtado E, Cilleros V, Nadal L, Simó A, Obis T, Garcia N, Santafé MM, Tomàs M, Halievski K, Jordan CL, Lanuza MA, Tomàs J (2017) Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI. Front Mol Neurosci 10: 1–22.https://doi.org/10.3389/fnmol.2017.00147

    Article  CAS  Google Scholar 

  3. Gaydukov A, Bogacheva P, Tarasova E, Molchanova A, Miteva A, Pravdivceva E, Balezina O (2019) Regulation of Acetylcholine Quantal Release by Coupled Thrombin/BDNF Signaling in Mouse Motor Synapses. Cells 8: 762.https://doi.org/10.3390/cells8070762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garcia N, Tomàs M, Santafe MM, Lanuza MA, Besalduch N, Tomàs J (2010) Localization of brain-derived neurotrophic factor, neurotrophin-4, tropomyosin-related kinase b receptor, and p75NTR receptor by high-resolution immunohistochemistry on the adult mouse neuromuscular junction. J Peripher Nerv Syst 15: 40–49.https://doi.org/10.1111/j.1529-8027.2010.00250.x

    Article  CAS  PubMed  Google Scholar 

  5. Bogacheva PO, Molchanova AI, Pravdivceva ES, Miteva AS, Balezina OP, Gaydukov AE (2022) ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses. Front Cell Neurosci 16: 1–17.https://doi.org/10.3389/fncel.2022.866802

    Article  CAS  Google Scholar 

  6. Kojima M, Matsui K, Mizui T (2019) BDNF pro-peptide: physiological mechanisms and implications for depression. Cell Tissue Res 377: 73–79.https://doi.org/10.1007/s00441-019-03034-6

    Article  PubMed  Google Scholar 

  7. Nykjaer A, Willnow TE (2012) Sortilin: A receptor to regulate neuronal viability and function. Trends Neurosci 35: 261–270.https://doi.org/10.1016/j.tins.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  8. Kraemer BR, Yoon SO, Carter BD (2014) The Biological Functions and Signaling Mechanisms of the p75 Neurotrophin Receptor. In: Neurodege-nerative Diseases: Neurobiology, Pathogenesis and Therapeutics. 121–164.

    Google Scholar 

  9. Luo H, Fernandez de Velasco EM, Wickman K (2022) Neuronal G protein-gated K 1 channels. Am J Physiol Cell Physiol 323: C439–C460.https://doi.org/10.1152/ajpcell.00102.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Santafé MM, Salon I, Garcia N, Lanuza MA, Uchitel OD, Tomàs J (2003) Modulation of ACh release by presynaptic muscarinic autoreceptors in the neuromuscular junction of the newborn and adult rat. Eur J Neurosci 17: 119–127.https://doi.org/10.1046/j.1460-9568.2003.02428.x

    Article  PubMed  Google Scholar 

  11. Santafé MM, Lanuza MA, Garcia N, Tomàs J (2006) Muscarinic autoreceptors modulate transmitter release through protein kinase C and protein kinase A in the rat motor nerve terminal. Eur J Neurosci 23: 2048–2056.https://doi.org/10.1111/j.1460-9568.2006.04753.x

    Article  PubMed  Google Scholar 

  12. Guarracino JF, Cinalli AR, Fernández V, Roquel LI, Losavio AS (2016) P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction. Neuroscience 326: 31–44.https://doi.org/10.1016/j.neuroscience.2016.03.066

    Article  CAS  PubMed  Google Scholar 

  13. Miteva AS, Gaydukov AE, Shestopalov VI, Balezina OP (2017) The role of pannexin 1 in the purinergic regulation of synaptic transmission in mouse motor synapses. Biochemistry (Mosc) Suppl Ser A Membr Cell Biol 11: 311–320.https://doi.org/10.1134/S1990747817040067

  14. Sousa-Soares C, Noronha-Matos JB, Correia-de-Sá P (2023) Purinergic Tuning of the Tripartite Neuromuscular Synapse. Mol Neurobiol 60: 4084–4104.https://doi.org/10.1007/s12035-023-03317-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miteva AS, Gaydukov AE, Balezina OP (2021) Acetylcholine Release in Mouse Motor Synapses. Changes of Purinergic Regulation under Conditions of Pharmacological Blockade of Pannexin 1 and Its Genetic Knockout. Biochemistry (Mosc) Suppl Ser A Membr Cell Biol 15: 378–386.https://doi.org/10.1134/S1990747821060088

  16. Tarasova EO, Miteva AS, Gaidukov AE, Balezina OP (2015) The role of adenosine receptors and L-type calcium channels in the regulation of the mediator secretion in mouse motor synapses. Biochemistry (Mosc) Suppl Ser A Membr Cell Biol 9: 318–328.https://doi.org/10.1134/s1990747815050141

  17. Gaydukov AE, Bogacheva PO, Balezina OP (2019) The Participation of Presynaptic Alpha7 Nicotinic Acetylcholine Receptors in the Inhibition of Acetylcholine Release during Long-Term Activity of Mouse Motor Synapses. Neurochem J 13: 20–27.https://doi.org/10.1134/S1819712419010082

    Article  CAS  Google Scholar 

  18. McLachlan EM, Martin AR (1981) Non-linear summation of end-plate potentials in the frog and mouse. J Physiol 311: 307–324.https://doi.org/10.1113/jphysiol.1981.sp013586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eggert S, Kins S, Endres K, Brigadski T (2021) Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer’s disease. Biol Chem 403: 43–71.https://doi.org/10.1515/hsz-2021-0330

    Article  CAS  PubMed  Google Scholar 

  20. Rogalski SL, Appleyard SM, Pattillo A, Terman GW, Chavkin C (2000) TrkB Activation by Brain-derived Neurotrophic Factor Inhibits the G Protein-gated Inward Rectifier Kir3 by Tyrosine Phosphorylation of the Channel. J Biol Chem 275: 25082–25088.https://doi.org/10.1074/jbc.M000183200

    Article  CAS  PubMed  Google Scholar 

  21. Cazorla M, Jouvenceau A, Rose C, Guilloux JP, Pilon C, Dranovsky A, Prémont J (2010) Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS One 5: 9777.https://doi.org/10.1371/journal.pone.0009777

    Article  ADS  CAS  Google Scholar 

  22. Schrøder TJ, Christensen S, Lindberg S, Langgård M, David L, Maltas PJ, Eskildsen J, Jacobsen J, Tagmose L, Simonsen KB, Biilmann Rønn LC, De Jong IEM, Malik IJ, Karlsson JJ, Bundgaard C, Egebjerg J, Stavenhagen JB, Strandbygård D, Thirup S, Andersen JL, Uppalanchi S, Pervaram S, Kasturi SP, Eradi P, Sakumudi DR, Watson SP (2014) The identification of AF38469: An orally bioavailable inhibitor of the VPS10P family sorting receptor Sortilin. Bioorg Med Chem Lett 24: 177–180.https://doi.org/10.1016/j.bmcl.2013.11.046

    Article  CAS  PubMed  Google Scholar 

  23. Minic J, Molgó J, Karlsson E, Krejci E (2002) Regulation of acetylcholine release by muscarinic receptors at the mouse neuromuscular junction depends on the activity of acetylcholinesterase. Eur J Neurosci 15: 439–448.https://doi.org/10.1046/j.0953-816x.2001.01875.x

    Article  PubMed  Google Scholar 

  24. Santafé MM, Lanuza MA, Garcia N, Tomàs M, Tomàs J (2007) Coupling of presynaptic muscarinic autoreceptors to serine kinases in low and high release conditions on the rat motor nerve terminal. Neuroscience 148: 432–440.https://doi.org/10.1016/j.neuroscience.2007.06.017

    Article  CAS  PubMed  Google Scholar 

  25. Garcia N, Tomàs M, Santafé MM, Besalduch N, Lanuza MA, Tomàs J (2010) The interaction between tropomyosin-related kinase B receptors and presynaptic muscarinic receptors modulates transmitter release in adult rodent motor nerve terminals. J Neurosci 30: 16514–16522.https://doi.org/10.1523/JNEUROSCI.2676-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Santafe MM, Priego M, Obis T, Garcia N, Tomàs M, Lanuza MA, Tomàs J (2015) Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse. Eur J Neurosci 42: 1775–1787.https://doi.org/10.1111/ejn.12922

    Article  CAS  PubMed  Google Scholar 

  27. Urbano FJ, Depetris RS, Uchitel OD (2001) Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals. Pflugers Arch 441: 824–831.https://doi.org/10.1007/s004240000489

    Article  CAS  PubMed  Google Scholar 

  28. Flink MT, Atchison WD, Atchison B (2003) Iberiotoxin-induced block of Ca2+-activated K+ channels induces dihydropyridine sensitivity of ACh release from mammalian motor nerve terminals. J Pharmacol Exp Therap 305: 646–652.https://doi.org/10.1124/jpet.102.046102

    Article  CAS  Google Scholar 

  29. Pagani R, Song M, Mcenery M, Qin N, Tsien RW, Toro L, Stefani E, Uchitel OD (2004) Differential expression of α1 and β subunits of voltage dependent Ca2+ channel at the neuromuscular junction of normal and P/Q Ca2+ channel knockout mouse. Neuroscience 123: 75–85.https://doi.org/10.1016/j.neuroscience.2003.09.019

    Article  CAS  PubMed  Google Scholar 

  30. Zhilyakov N, Arkhipov A, Malomouzh A, Samigullin D (2021) Activation of neuronal nicotinic receptors inhibits acetylcholine release in the neuromuscular junction by increasing Ca2+ flux through Cav1 channels. Int J Mol Sci 22: 9031.https://doi.org/10.3390/ijms22169031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gaydukov AE, Melnikova SN, Balezina OP (2009) Facilitation of acetylcholine secretion in mouse motor synapses caused by calcium release from depots upon activation of L-type calcium channels. Bull Exp Biol Med 148: 163–166.https://doi.org/10.1007/s10517-009-0678-9

    Article  CAS  PubMed  Google Scholar 

  32. Gaydukov AE, Tarasova EO, Balezina OP (2013) Calcium-dependent phosphatase calcineurin downregulates evoked neurotransmitter release in neuromuscular junctions of mice. Neurochem J 7: 29–33.https://doi.org/10.1134/S1819712413010030

    Article  CAS  Google Scholar 

  33. Miteva AS, Gaydukov AE, Shestopalov VI, Balezina OP (2018) Mechanism of P2X7 receptor-dependent enhancement of neuromuscular transmission in pannexin 1 knockout mice. Purinergic Signal 14: 459–469.https://doi.org/10.1007/s11302-018-9630-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tarasova EO, Khotkina NA, Bogacheva PO, Chernyshev KA, Gaydukov AE, Balezina OP (2021) Noncanonical Potentiation of Evoked Quantal Release of Acetylcholine by Cannabinoids Anandamide and 2-Arachidonoylglycerol in Mouse Motor Synapses. Biochemistry (Mosc) Suppl Ser A Membr Cell Biol 15: 395–405.https://doi.org/10.1134/S199074782106012X

  35. Guarracino JF, Cinalli AR, Veggetti MI, Losavio AS (2018) Endogenous purines modulate K+-evoked ACh secretion at the mouse neuromuscular junction. J Neurosci Res 96: 1066–1079.https://doi.org/10.1002/jnr.24223

    Article  CAS  PubMed  Google Scholar 

  36. González Sanabria J, Hurtado Paso M, Frontera T, Losavio A (2022) Effect of endogenous purines on electrically evoked ACh release at the mouse neuromuscular junction. J Neurosci Res 100: 1933–1950.https://doi.org/10.1002/jnr.25107

    Article  CAS  PubMed  Google Scholar 

  37. Correia-de-Sá P, Sebastião AM, Ribeiro JA (1991) Inhibitory and excitatory effects of adenosine receptor agonists on evoked transmitter release from phrenic nerve endings of the rat. Br J Pharmacol 103: 1614–1620.https://doi.org/10.1111/j.1476-5381.1991.tb09836.x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Perissinotti PP, Uchitel OD (2010) Adenosine drives recycled vesicles to a slow-release pool at the mouse neuromuscular junction. Eur J Neurosci 32: 985–996.https://doi.org/10.1111/j.1460-9568.2010.07332.x

    Article  PubMed  Google Scholar 

  39. Searl TJ, Silinsky EM (2012) Evidence for constitutively-active adenosine receptors at mammalian motor nerve endings. Eur J Pharmacol 685: 38–41.https://doi.org/10.1016/j.ejphar.2012.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nascimento F, Sebastião AM, Ribeiro JA (2015) Presymptomatic and symptomatic ALS SOD1(G93A) mice differ in adenosine A1 and A2A receptor-mediated tonic modulation of neuromuscular transmission. Purinergic Signal 11: 471–480.https://doi.org/10.1007/s11302-015-9465-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Silverman W, Locovei S, Dahl G (2008) Probenecid, a gout remedy, inhibits pannexin 1 channels. Am J Physiol Cell Physiol 295: 761–767.https://doi.org/10.1152/ajpcell.00227.2008

    Article  CAS  Google Scholar 

  42. Xia J, Lim JC, Lu W, Beckel JM, Macarak EJ, Laties AM, Mitchell CH (2012) Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X 7 receptors. J Physiol 590: 2285–2304.https://doi.org/10.1113/jphysiol.2012.227983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dahl G, Keane RW (2012) Pannexin: From discovery to bedside in 11±4 years? Brain Res 1487: 150–159.https://doi.org/10.1016/j.brainres.2012.04.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lopatář J, Dale N, Frenguelli BG (2015) Pannexin-1-mediated ATP release from area CA3 drives mGlu5-dependent neuronal oscillations. Neuropharmacology 93: 219–228.https://doi.org/10.1016/j.neuropharm.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Z, Lei Y, Yan C, Mei X, Jiang T, Ma Z, Wang Q (2019) Probenecid Relieves Cerebral Dysfunction of Sepsis by Inhibiting Pannexin 1-Dependent ATP Release. Inflammation 42: 1082–1092.https://doi.org/10.1007/s10753-019-00969-4

    Article  CAS  PubMed  Google Scholar 

  46. Mizui T, Ishikawa Y, Kumanogoh H, Kojima M (2016) Neurobiological actions by three distinct subtypes of brain-derived neurotrophic factor: Multi-ligand model of growth factor signaling. Pharmacol Res 105: 93–98.https://doi.org/10.1016/j.phrs.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  47. Anastasia A, Deinhardt K, Chao MV, Will NE, Irmady K, Lee FS, Hempstead BL, Bracken C (2013) Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun 4: 2490.https://doi.org/10.1038/ncomms3490

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Teng HK (2005) ProBDNF Induces Neuronal Apoptosis via Activation of a Receptor Complex of p75NTR and Sortilin. J Neurosci 25: 5455–5463.https://doi.org/10.1523/JNEUROSCI.5123-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meeker RB, Williams KS (2015) The p75 neurotrophin receptor: At the crossroad of neural repair and death. Neural Regen Res 10: 721–725.https://doi.org/10.4103/1673-5374.156967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taylor AR, Gifondorwa DJ, Robinson MB, Strupe JL, Prevette D, Johnson JE, Hempstead B, Oppenheim RW, Milligan CE (2012) Motoneuron programmed cell death in response to proBDNF. Dev Neurobiol 72: 699–712.https://doi.org/10.1002/dneu.20964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tomàs J, Garcia N, Lanuza MA, Santafé MM, Tomàs M, Nadal L, Hurtado E, Simó-Ollé A, Cilleros-Mañé V, Just-Borràs L (2018) Adenosine receptors in developing and adult mouse neuromuscular junctions and functional links with other metabotropic receptor pathways. Front Pharmacol 9: 1–10.https://doi.org/10.3389/fphar.2018.00397

    Article  CAS  Google Scholar 

  52. Atchison WD, O’Leary SM (1987) Bay K 8644 increases release of acetylcholine at the murine neuromuscular junction. Brain Res 419: 315–319.https://doi.org/10.1016/0006-8993(87)90599-3

    Article  CAS  PubMed  Google Scholar 

  53. Ruiz R, Cano R, Casañas JJ, Gaffield MA, Betz WJ, Tabares L (2011) Active zones and the readily releasable pool of synaptic vesicles at the neuromuscular junction of the mouse. J Neurosci 31: 2000–2008.https://doi.org/10.1523/JNEUROSCI.4663-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Giovannini F, Sher E, Webster R, Boot J, Lang B (2002) Calcium channel subtypes contributing to acetylcholine release from normal, 4-aminopyridine-treated and myasthenic syndrome auto-antibodies-affected neuromuscular junctions. Br J Pharmacol 136: 1135–1145.https://doi.org/10.1038/sj.bjp.0704818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Naser PV, Kuner R (2018) Molecular, Cellular and Circuit Basis of Cholinergic Modulation of Pain. Neuroscience 387: 135–148.https://doi.org/10.1016/j.neuroscience.2017.08.049

    Article  CAS  PubMed  Google Scholar 

  56. Sugawara S, Nakaya Y, Matsumura S, Hirose K, Saito Y, Kaneko R, Kobayashi M (2022) Neural Subtype-dependent Cholinergic Modulation of Neural Activities by Activation of Muscarinic 2 Receptors and G Protein-activated Inwardly Rectifying Potassium Channel in Rat Periaqueductal Gray Neurons. Neuroscience 506: 1–13.https://doi.org/10.1016/j.neuroscience.2022.10.012

    Article  CAS  PubMed  Google Scholar 

  57. Guzman SJ, Gerevich Z (2016) P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction. Neural Plast 2016: 1207393.https://doi.org/10.1155/2016/1207393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wetherington JP, Lambert NA (2002) Differential desensitization of responses mediated by presynaptic and postsynaptic A1 adenosine receptors. J Neurosci 22: 1248–1255.https://doi.org/10.1523/jneurosci.22-04-01248.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Clark BD, Kurth-Nelson ZL, Newman EA (2009) Adenosine-evoked hyperpolarization of retinal ganglion cells is mediated by G-protein-coupled inwardly rectifying K+ and small conductance Ca2+-activated K+ channel activation. J Neurosci 29: 11237–11245.https://doi.org/10.1523/JNEUROSCI.2836-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. James SD, Hawkins VE, Falquetto B, Ruskin DN, Masino SA, Moreira TS, Olsen ML, Mulkey DK (2018) Adenosine signaling through A1 receptors inhibits chemosensitive neurons in the retrotrapezoid nucleus. eNeuro 5: 1–11.https://doi.org/10.1523/ENEURO.0404-18.2018

    Article  Google Scholar 

  61. Hill E, Hickman C, Diez R, Wall M (2020) Role of A1 receptor-activated GIRK channels in the suppression of hippocampal seizure activity. Neuropharmacology 164: 107904.https://doi.org/10.1016/j.neuropharm.2019.107904

    Article  CAS  PubMed  Google Scholar 

  62. Lüscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons. Neuron 19: 687–695.https://doi.org/10.1016/S0896-6273(00)80381-5

    Article  PubMed  Google Scholar 

  63. Kim CS, Johnston D (2015) A1 adenosine receptor-mediated GIRK channels contribute to the resting conductance of CA1 neurons in the dorsal hippocampus. J Neurophysiol 113: 2511–2523.https://doi.org/10.1152/jn.00951.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ladera C, Del Carmen Godino M, Cabañero MJ, Torres M, Watanabe M, Luján R, Sánchez-Prieto J (2008) Pre-synaptic GABAB receptors inhibit glutamate release through GIRK channels in rat cerebral cortex. J Neurochem 107: 1506–1517.https://doi.org/10.1111/j.1471-4159.2008.05712.x

    Article  CAS  PubMed  Google Scholar 

  65. Fernández-Alacid L, Watanabe M, Molnár E, Wickman K, Luján R (2011) Developmental regulation of G protein-gated inwardly-rectifying K+ (GIRK/Kir3) channel subunits in the brain. Eur J Neurosci 34: 1724–1736.https://doi.org/10.1111/j.1460-9568.2011.07886.x

    Article  PubMed  PubMed Central  Google Scholar 

  66. Luján R, Marron Fernandez de Velasco E, Aguado C, Wickman K (2014) New insights into the therapeutic potential of Girk channels. Trends Neurosci 37: 20–29.https://doi.org/10.1016/j.tins.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  67. Yum DS, Cho JH, Choi IS, Nakamura M, Lee JJ, Lee MG, Choi BJ, Choi JK, Jang IS (2008) Adenosine A1 receptors inhibit GABAergic transmission in rat tuberomammillary nucleus neurons. J Neurochem 106: 361–371.https://doi.org/10.1111/j.1471-4159.2008.05400.x

    Article  CAS  PubMed  Google Scholar 

  68. Garcia N, Priego M, Obis T, Santafe MM, Tomàs M, Besalduch N, Lanuza Ma, Tomàs J (2013) Adenosine A1 and A2A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction. Eur J Neurosci 38: 2229–2241.https://doi.org/10.1111/ejn.12220

    Article  PubMed  Google Scholar 

  69. Tomàs J, Santafé MM, Garcia N, Lanuza MA, Tomàs M, Besalduch N, Obis T, Priego M, Hurtado E (2014) Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse. J Neurosci Res 92: 543–554.https://doi.org/10.1002/jnr.23346

    Article  CAS  PubMed  Google Scholar 

  70. Tsentsevitsky AN, Khaziev EF, Kovyazina IV, Petrov AM (2022) GIRK channel as a versatile regulator of neurotransmitter release via L-type Ca2+ channel-dependent mechanism in the neuromuscular junction. Neuropharmacology 209: 109021.https://doi.org/10.1016/j.neuropharm.2022.109021

    Article  CAS  PubMed  Google Scholar 

  71. Petrov AM, Zakirjanova GF, Kovyazina IV, Tsentsevitsky AN, Bukharaeva EA (2022) Adrenergic receptors control frequency-dependent switching of the exocytosis mode between “full-collapse” and “kiss-and-run” in murine motor nerve terminal. Life Sci 296: 120433.https://doi.org/10.1016/j.lfs.2022.120433

    Article  CAS  PubMed  Google Scholar 

  72. Tsentsevitsky AN, Gafurova CR, Mukhutdinova KA, Giniatullin AR, Fedorov NS, Malomouzh AI, Petrov AM (2023) Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions. Life Sci 318: 121507.https://doi.org/10.1016/j.lfs.2023.121507

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Some of the equipment used in the experiments was provided by Lomonosov Moscow State University as part of the federal MSU Development Program (contract 0504-44-2023).

Funding

This work was funded by the Russian Science Foundation (project 22-25-00111). No additional grants were received to conduct or supervise this particular study.

Author information

Authors and Affiliations

Authors

Contributions

Idea of the work and planning of the experiment (A.E.G.), data collection (A.I.M., A.E.G.), data processing (A.I.M., A.E.G.), manuscript writing and editing (A.I.M., O.P.B., A.E.G.).

Corresponding author

Correspondence to A. E. Gaydukov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Experiments with animals were conducted in accordance with international recommendations for biomedical research with laboratory animals and were approved by the Bioethical Commission of the Lomonosov Moscow State University (Protocol no. 97-zh-3 of November 11, 2021).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molchanova, A.I., Balezina, O.P. & Gaydukov, A.E. BDNF Prodomain Inhibits Neurotransmitter Quantal Release in Mouse Motor Synapses with the Necessary Participation of Sortilin and Adenosine A1-Receptors. J Evol Biochem Phys 60, 363–379 (2024). https://doi.org/10.1134/S0022093024010277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093024010277

Keywords:

Navigation