Skip to main content
Log in

Vacuumless Arc Discharge Synthesis of Molybdenum Carbide-Based Powders at Various Discharge Currents

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper presents results of an experimental study concerned with vacuumless arc discharge synthesis of ultrafine molybdenum carbide-based materials. We have found discharge circuit parameters that ensure an essentially complete conversion of starting molybdenum. The synthesis product contained micron-sized crystals and graphene-like carbon structures, with molybdenum carbide nanoparticles embedded in them. We present preliminary results on the catalytic activity of the synthesized materials, without modification with precious metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Wang, W., Liu, C., Zhou, D., Yang, L., Zhou, J., and Yang, D., In-situ synthesis of coupled molybdenum carbide and molybdenum nitride as electrocatalyst for hydrogen evolution reaction, J. Alloys Compd., 2019, vol. 792, pp. 230–239.https://doi.org/10.1016/j.jallcom.2019.03.397

    Article  CAS  Google Scholar 

  2. Huang, Yu., Wang, C., Song, H., Bao, Ya., and Lei, X., Carbon-coated molybdenum carbide nanosheets derived from molybdenum disulfide for hydrogen evolution reaction, J. Hydrogen Energy, 2018, vol. 43, pp. 12610–1617.https://doi.org/10.1016/j.ijhydene.2018.03.233

    Article  CAS  Google Scholar 

  3. Cui, T., Dong, J., Pan, X., Yu, T., Fu, Q., and Bao, X., Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes, J. Energy Chem., 2019, vol. 28, pp. 123–127.https://doi.org/10.1016/j.jechem.2018.03.006

    Article  Google Scholar 

  4. Xia, K., Guo, J., Xuan, C., Huang, T., Deng, Z., Chen, L., and Wang, D., Ultrafine molybdenum carbide nanoparticles supported on nitrogen doped carbon nanosheets for hydrogen evolution reaction, Chin. Chem. Lett., 2019, vol. 30, pp. 192–196.https://doi.org/10.1016/j.cclet.2018.05.009

    Article  CAS  Google Scholar 

  5. Wei, H., Xi, Q., Chen, X., Guo, D., Ding, F., Yang, Z., Wang, S., Li, J., and Huang, S., Molybdenum carbide nanoparticles coated into the graphene wrapping N-doped porous carbon microspheres for highly efficient electrocatalytic hydrogen evolution both in acidic and alkaline media, Adv. Sci., 2018, vol. 5, paper 170073.https://doi.org/10.1002/advs.201700733

  6. Baklanova, O.N., Vasilevich, A.V., Lavrenov, A.V., et al., Molybdenum carbide synthesized by mechanical activation an inert medium, J. Alloys Compd., 2017, vol. 698, pp. 1018–1027.https://doi.org/10.1016/j.jallcom.2016.12.186

    Article  CAS  Google Scholar 

  7. Guil-Lopez, R., Nieto, E., Botas, J.A., and Fierro, J.L.G., On the genesis of molybdenum carbide phases during reduction–carburization reactions, J. Solid State Chem., 2012, vol. 190, pp. 285–295.https://doi.org/10.1016/j.jssc.2012.02.021

    Article  CAS  Google Scholar 

  8. Lv, C., Huang, Z., Yang, Q., Wei, G., Chen, Z., Humphrey, M.G., and Zhang, C., Ultrafast synthesis of molybdenum carbide nanoparticles for efficient hydrogen generation, J. Mater. Chem. A, 2017, vol. 43, pp. 22802–22812.https://doi.org/10.1039/C7TA06266D

    Article  Google Scholar 

  9. Zhao, H., Kang, C., Ma, Z., Cheng, Z., Jia, T., Kimura, H., Fu, Q., Tao, H., and Xiong, L., Synthesis of molybdenum carbide superconducting compounds by microwave-plasma chemical vapor deposition, J. Appl. Phys., 2018, vol. 123, no. 5, paper 053301.https://doi.org/10.1063/1.5010101

  10. Yan, Z., Zang, J., Han, C., Jia, S., Tian, P., Gao, H., and Wang, Ya., Molybdenum oxide and molybdenum carbide coated carbon black as an electrocatalyst for hydrogen evolution reaction in acidic media, Int. J. Hydrogen Energy, 2017, vol. 42, no. 44, pp. 26985–26994.https://doi.org/10.1016/j.ijhydene.2017.09.077

    Article  CAS  Google Scholar 

  11. Arora, N. and Sharma, N.N., Arc discharge synthesis of carbon nanotubes: comprehensive review, Diamond Relat. Mater., 2014, vol. 50, pp. 135–150.https://doi.org/10.1016/j.diamond.2014.10.001

    Article  CAS  Google Scholar 

  12. Pak, A.Y., Shanenkov, I.I., Mamontov, G.Y., and Kokorina, A.I., Vacuumless synthesis of tungsten carbide in a self-shielding atmospheric plasma of DC arc discharge, Int. J. Refract. Met. Hard Mater., 2020, vol. 93, paper 105343.https://doi.org/10.1016/j.ijrmhm.2020.105343

  13. Vassilyeva, Y.Z., Butenko, D.S., Li, S., Han, W., and Pak, A.Y., Synthesis of molybdenum carbide catalyst by DC arc plasma in ambient air for hydrogen evolution, Mater. Chem. Phys., 2020, vol. 254, paper 123509.

  14. Pak, A.Ya., RF Patent 2716694 C1, Byull. Izobret., 2020, no. 8.

  15. Martynov, R.S., Pak, A.Ya., and Mamontov G.Ya., RF Patent Application 2019111857/19, Byull. Izobret., 2019, no. 26.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-38-90088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Z. Vassilyeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vassilyeva, Y.Z., Pak, A.Y., Kononenko, P.N. et al. Vacuumless Arc Discharge Synthesis of Molybdenum Carbide-Based Powders at Various Discharge Currents. Inorg Mater 58, 265–270 (2022). https://doi.org/10.1134/S002016852203013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852203013X

Keywords:

Navigation