Skip to main content
Log in

Electrochemical Intercalation of Sodium into Composites Based on Iron(III) Phosphate and Carbon

  • Published:
Inorganic Materials Aims and scope

Abstract

Materials based on amorphous iron(III) phosphate have been prepared via precipitation in an aqueous medium and microemulsion, as well as in a microemulsion in the presence of a mesoporous carbon material. Heat treatment of amorphous FePO4 leads to the formation of the hexagonal phase of crystalline FePO4. It has been shown that sodium intercalation under operating conditions of sodium ion batteries is more effective in the case of materials based on amorphous FePO4. The discharge capacity of the material based on amorphous FePO4 synthesized by the microemulsion method in the presence of the G_157M mesoporous carbon material is ~183 mAh/g and is the sum of the capacity due to sodium intercalation into FePO4 and that due to the reduction of functional groups on the surface of the mesoporous carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Larcher, D. and Tarascon, J., Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 2015, vol. 7, no. 1, pp. 19–29. https://doi.org/10.1038/nchem.2085

    Article  CAS  PubMed  Google Scholar 

  2. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, no. 8, pp. 826–852. doi 10.1070/RCR4497

    Article  CAS  Google Scholar 

  3. Juner, Z., Wierzbicki, T., and Li, W., A review of safety-focused mechanical modeling of commercial lithium-ion batteries, J. Power Sources, 2018, vol. 378, pp. 153–168. https://doi.org/10.1016/j.jpowsour.2017.12.034

    Article  CAS  Google Scholar 

  4. Chagnes, A. and Swiatowska, J., Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling, Amsterdam: Elsevier, 2015.

    Google Scholar 

  5. Islam, M.S. and Fisher, C.A., Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties, Chem. Soc. Rev., 2014, vol. 43, no. 1, pp. 185–204. https://doi.org/10.1039/C3CS60199D

    Article  CAS  PubMed  Google Scholar 

  6. Kundu, D., Talaie, E., Duffort, V., and Nazar, L.F., The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem., Int. Ed., 2015, vol. 54, no. 11, pp. 3431–3448. https://doi.org/10.1002/anie.201410376

    Article  CAS  Google Scholar 

  7. Hwang, J.-Y., Myung, S.-T., and Sun, Y.-K., Sodium-ion batteries: present and future, Chem. Soc. Rev., 2017, vol. 46, no. 12, pp. 3529–3614. https://doi.org/10.1039/C6CS00776G

    Article  CAS  PubMed  Google Scholar 

  8. Skundin, A.M., Kulova, T.L., and Yaroslavtsev, A.B., Sodium-ion batteries (a review), Russ. J. Electrochem., 2018, vol. 54, no. 2, pp. 113–152. https://doi.org/10.1134/S1023193518020076

    Article  CAS  Google Scholar 

  9. Oh, S.-M., Myung, S.-T., Hassoun, J., Scrosati, B., and Sun, Y.-K., Reversible NaFePO4 electrode for sodium secondary batteries, Electrochem. Commun., 2012, vol. 22, no. 1, pp. 149–152. https://doi.org/10.1016/j.elecom.2012.06.014

    Article  CAS  Google Scholar 

  10. Kim, J., Seo, D.-H., Kim, H., Park, I., Yoo, J.-K., Jung, S.-K., Park, Y.-U., Goddard, W.A. III, and Kang, K., Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries, Energy Environ. Sci., 2015, vol. 8, no. 2, pp. 540–545. https://doi.org/10.1039/c4ee03215b

    Article  CAS  Google Scholar 

  11. Kapaev, R., Chekannikov, A., Novikova, S., Yaroslavtsev, S., Kulova, T., Rusakov, V., Skundin, A., and Yaroslavtsev, A., Mechanochemical treatment of maricite-type NaFePO4 for achieving high electrochemical performance, J. Solid State Electrochem., 2017, vol. 21, no. 8, pp. 2373–2380. https://doi.org/10.1007/s10008-017-3592-5

    Article  CAS  Google Scholar 

  12. Kapaev, R.R., Chekannikov, A.A., Novikova, S.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Activation of NaFePO4 with maricite structure for application as a cathode material in sodium-ion batteries, Mendeleev Commun., 2017, vol. 27, no. 3, pp. 263–264. https://doi.org/10.1016/j.mencom.2017.05.015

    Article  CAS  Google Scholar 

  13. Masquelier, C. and Croguennec, L., Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries, Chem. Rev., 2013, vol. 113, no. 8, pp. 6552–6591. https://doi.org/10.1021/cr3001862

    Article  CAS  PubMed  Google Scholar 

  14. Moreau, P., Guyomard, D., Gaubicher, J., and Boucher, F., Structure and stability of sodium intercalated phases in olivine FePO4, Chem. Mater., 2010, vol. 22, no. 14, pp. 4126–4128. https://doi.org/10.1021/cm101377h

    Article  CAS  Google Scholar 

  15. Kundu, D., Talaie, E., Duffort, V., and Nazar, L.F., The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem., Int. Ed., 2015, vol. 54, no. 11, pp. 3431–3448. https://doi.org/10.1002/anie.201410376

    Article  CAS  Google Scholar 

  16. Sun, A., Beck, F.R., Haynes, D., Poston, J.A., Jr., Narayanan, S.R., Kumta, P.N., and Manivannan, A., Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO4, Mater. Sci. Eng., B., 2012, vol. 177, pp. 1729–1733. https://doi.org/10.1016/j.mseb.2012.08.004

    Article  CAS  Google Scholar 

  17. Prosini, P.P., Cento, C., Masci, A., and Carewska, M., Sodium extraction from sodium iron phosphate with a maricite structure, Solid State Ionics, 2014, vol. 263, pp. 1–8. https://doi.org/10.1016/j.ssi.2014.04.019

    Article  CAS  Google Scholar 

  18. Kosova, N.V., Podugolnikov, V.R., Devyatkina, E.T., and Slobodyuk, A.B., Structure and electrochemistry of NaFePO4 and Na2FePO4F cathode materials prepared via mechanochemical route, Mater. Res. Bull., 2014, vol. 60, pp. 849–857. https://doi.org/10.1016/j.materresbull.2014.09.081

    Article  CAS  Google Scholar 

  19. Yang, S.-B. and Son, J.-T., Synthesis and characterization of carbon-coated nano-sized Na0.9FePO4, J. Korean Phys. Soc., 2016, vol. 69, no. 3, p. 443–447. https://doi.org/10.3938/jkps.69.443

    Article  CAS  Google Scholar 

  20. Skundin, A.M. and Brylev, O.A., Nanomaterialy v sovremennykh istochnikakh toka (Nanomaterials in Advanced Current Sources), Moscow: Fakul’tet Nauk o Materialakh, 2011.

  21. Yang, X., Zhang, S.M., Zhang, J.X., Xu, M.Y., Ren, P., Li, X.C., and Yan, L.C., The study on synthesis and modification for iron phosphate, Funct. Mater. Lett., 2011, vol. 4, pp. 323–326. https://doi.org/10.1142/S1793604711002226

    Article  CAS  Google Scholar 

  22. Safronov, D.V., Novikova, S.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Lithium diffusion in materials based on LiFePO4 doped with cobalt and magnesium, Inorg. Mater., 2012, vol. 48, no. 5, pp. 513–519. doi 10.1134/S0020168512050159

    Article  CAS  Google Scholar 

  23. Stenina, I.A., Sobolev, A.N., Yaroslavtsev, S.A., Rusakov, V.S., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Influence of iron doping on structure and electrochemical properties of Li4Ti5O12, Electrochim. Acta, 2016, vol. 219, pp. 524–530. https://doi.org/10.1016/j.electacta.2016.10.034

    Article  CAS  Google Scholar 

  24. Liu, Q., Liu, W., Li, D., and Wang, Z., Synthesis and characterization of grape-like LiFe0.97M0.03PO4/C (M = Ni, Co, Mn) composites, Mater. Lett., 2016, vol. 162, pp. 87–90. https://doi.org/10.1016/j.matlet.2015.09.129

    Article  CAS  Google Scholar 

  25. Zaghib, K., Guerfi, A., Hovington, P., Vijh, A., Trudeau, M., Mauger, A., Goodenough, J.B., and Julien, C.M., Review and analysis of nanostructured olivine-based lithium rechargeable batteries: status and trends, J. Power Sources, 2013, vol. 232, pp. 357–369. https://doi.org/10.1016/j.jpowsour.2012.12.095

    Article  CAS  Google Scholar 

  26. Zhang, S.M., Zhang, J.X., Xu, S.J., Yuan, X.J., and He, B.C., Li ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries, Electrochim. Acta, 2013, vol. 88, pp. 287–293. https://doi.org/10.1016/j.electacta.2012.10.029

    Article  CAS  Google Scholar 

  27. Kapaev, R.R., Novikova, S.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Synthesis of LiFePO4 nanoplates as cathode materials for Li-ion batteries, Nanotechnol. Russ., 2016, vol. 11, nos. 11–12, pp. 757–760. doi 10.1134/S1995078016060136

    Article  CAS  Google Scholar 

  28. Wang, J. and Sun, X., Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries, Energy Environ. Sci., 2012, vol. 5, no. 1, pp. 5163–5185.https://doi.org/10.1039/C1EE01263K

    Article  CAS  Google Scholar 

  29. Li, H. and Zhou, H., Enhancing the performances of Li-ion batteries by carbon-coating: present and future, Chem. Commun., 2012, vol. 48, pp. 1201–1217. https://doi.org/10.1039/C1CC14764A

    Article  CAS  Google Scholar 

  30. Kucinskis, G., Bajars, G., and Kleperis, J., Graphene in lithium ion battery cathode materials, J. Power Sources, 2013, vol. 240, pp. 66–79. https://doi.org/10.1016/j.jpowsour.2013.03.160

    Article  CAS  Google Scholar 

  31. Wang, W., Gao, P., Zhang, S., and Zhang, J., A cylindrical FePO4/MWCNTs composite with a 3D conductive network structure used as a cathode material for lithium-ion batteries, J. Alloys Compd., 2016, vol. 692, pp. 908–914. https://doi.org/10.1016/j.jallcom.2016.08.002

    Article  CAS  Google Scholar 

  32. Wang, G., Ma, Z., Shao, G., Kong, L., and Gao, W., Synthesis of LiFePO4@carbon nanotube core–shell nanowires with a high-energy efficient method for superior lithium ion battery cathodes, J. Power Sources, 2015, vol. 291, pp. 209–214. doi.org/https://doi.org/10.1016/j.jpowsour.2015.05.027

    Article  CAS  Google Scholar 

  33. Stenina, I.A., Bukalov, S.S., Kulova, T.L., Skundin, A.M., Tabachkova, N.Yu., and Yaroslavtsev, A.B., Influence of a carbon coating on the electro chemical properties of lithium-titanate-based nanosized materials, Nanotechnol. Russ., 2015, vol. 10, nos. 11–12, pp. 865–871. doi 10.1134/S1995078015060130

    Article  CAS  Google Scholar 

  34. Eftekhari, A., LiFePO4/C nanocomposites for lithium-ion batteries, J. Power Sources, 2017, vol. 343, pp. 395–411. https://doi.org/10.1016/j.jpowsour.2017.01.080

    Article  CAS  Google Scholar 

  35. Danks, A., Hall, S., and Schnepp, Z., The evolution of 'sol–gel' chemistry as a technique for materials synthesis, Mater. Horizons, 2016, vol. 3, no. 2, pp. 91–112. https://doi.org/10.1039/C5MH00260E

    Article  CAS  Google Scholar 

  36. Chen, L., Wu, P., Xiea, K., Li, J., Xu, B., Cao, G., Chen, Y., Tang, Y., Zhou, Y., Lu, T., and Yang, Y., FePO4 nanoparticles embedded in a large mesoporous carbon matrix as a high-capacity and high-rate cathode for lithium-ion batteries, Electrochim. Acta, 2003, vol. 92, pp. 433–437. https://doi.org/10.1016/j.electacta.2013.01.048

    Article  CAS  Google Scholar 

  37. Zhu, Y., Tang, S., Shi, H., and Hu, H., Synthesis of FePO4xH2O for fabricating submicrometer structured LiFePO4/C by a co-precipitation method, Ceram. Int., 2014, vol. 140, pp. 2685–2690. https://doi.org/10.1016/j.ceramint.2013.10.055

    Article  CAS  Google Scholar 

  38. Xu, S., Zhang, S., Zhang, J., Tana, T., and Liu, Y., A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique, J. Mater. Chem. A, 2014, vol. 2, pp. 7221–7228. https://doi.org/10.1039/c4ta00239c

    Article  CAS  Google Scholar 

  39. Wang, J. and Sun, X., Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries, Energy Environ. Sci., 2012, vol. 5, no. 1, pp. 5163–5185. https://doi.org/10.1039/C1EE01263K

    Article  CAS  Google Scholar 

  40. Wilcox, J.D., Doeff, M.M., Marcinek, M., and Kostecki, R., Factors influencing the quality of carbon coatings on LiFePO4, J. Electrochem. Soc., 2007, vol. 154, no. 5, pp. A389–A395. https://doi.org/10.1149/1.2667591

    Article  CAS  Google Scholar 

  41. Christmann, K., Introduction to Surface Physical Chemistry, New York: Springer, 1991.

    Book  Google Scholar 

  42. Doeff, M.M., Hu, Y., McLarnon, F., and Kostecki, R., Effect of surface carbon structure on the electrochemical performance of LiFePO4, Electrochem. Solid-State Lett., 2003, vol. 6, no. 10, pp. A207–A209. https://doi.org/10.1149/1.1601372

    Article  CAS  Google Scholar 

  43. Song, Y., Zavalij, P.Y., Suzuki, M., and Whittingham, M.S., New iron(III) phosphate phases: crystal structure and electrochemical and magnetic properties, Inorg. Chem., 2002, vol. 41, pp. 5778–5786. https://doi.org/10.1021/ic025688q

    Article  CAS  PubMed  Google Scholar 

  44. Tang, P., Holzwarth, N.A.W., and Du, Y.A., Comparison of the electronic structures of four crystalline phases of FePO4, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, paper 174 118. https://doi.org/10.1103/PhysRevB.76.174118

  45. Masquelier, C., Reale, P., Wurm, C., Morcrette, M., Dupont, L., and Larcher, D., Hydrated iron phosphates FePO4nH2O and Fe4(P2O7)3nH2O as 3 V positive electrodes in rechargeable lithium batteries, J. Electrochem. Soc., 2002, vol. 149, no. 8, pp. A1037–A1044. https://doi.org/10.1149/1.1489686

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 16-13-00024) and the Russian Federation Ministry of Education and Science (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research, materials characterization).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Yaroslavtsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozerova, V.V., Novikova, S.A., Chekannikov, A.A. et al. Electrochemical Intercalation of Sodium into Composites Based on Iron(III) Phosphate and Carbon. Inorg Mater 55, 462–469 (2019). https://doi.org/10.1134/S0020168519050169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519050169

Keywords:

Navigation