Skip to main content
Log in

A Study on the Process of Plasma-Enhanced Chemical Vapor Deposition of (AlxGa1 – x)2O3 Thin Films

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A process for fabricating Al-doped β-Ga2O3 thin films of the (AlxGa1−x)2O3 composition by plasma-enhanced chemical vapor deposition has been studied for the first time. High-purity gallium metal, aluminum iodide (AlI3), and high-purity oxygen were used as precursors. Low-temperature plasma at a reduced pressure (0.01 torr) was the initiator of chemical transformations between the reactants. The plasma-enhanced deposition process was studied by optical emission spectroscopy in the range of 180–1100 nm. The obtained thin films of the (AlxGa1−x)2O3 system with the amount of the Al2O3 phase up to 20% were studied by various analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ahmadi, E. and Oshima, Y., J. Appl. Phys., 2019, vol. 126, no. 16, p. 160901.

    Article  Google Scholar 

  2. Peelaers, H., Lyons, J.L., Varley, J.B., and van de Walle, C.G., APL Mater., 2019, vol. 7, no. 2, p. 022519.

    Article  Google Scholar 

  3. Oshima, T., Kato, Y., Kawano, N., Kuramata, A., Yamakoshi, S., Fujita, S., Oishi, T., and Kasu, M., APEX, 2017, vol. 10, no. 3, p. 035701.

    Article  Google Scholar 

  4. Zhang, Y., Neal, A., Xia, Z., Joishi, C., Johnson, J.M., Zheng, Y., Bajaj, S., Brenner, M., Dorsey, D., Chabak, K., Jessen, G., Hwang, J., Mou, S., Heremans, J.P., and Rajan, S., Appl. Phys. Lett., 2018, vol. 112, no. 17, p. 173502.

    Article  Google Scholar 

  5. Olivier, J. and Poirier, R., Surf. Sci., 1981, vol. 105, p. 347.

    Article  CAS  Google Scholar 

  6. Ishizawa, N., Miyata, T., Minato, I., Marumo, F., and Iwai, S., Acta Crystallogr., Sect B: Struct. Sci., 1980, vol. 36, p. 228.

    Article  Google Scholar 

  7. Hill, V.G., Roy, R., and Osborn, E.F., J. Am. Ceram. Soc., 1952, vol. 35, p. 135.

    Article  CAS  Google Scholar 

  8. Jaromin, A.L. and Edwards, D.D., J. Am. Ceram. Soc., 2005, vol. 88, p. 2573.

    Article  CAS  Google Scholar 

  9. Kaun, S.W., Wu, F., and Speck, J.S., J. Vac. Sci. Technol., A, 2015, vol. 33, p. 041508.

    Article  Google Scholar 

  10. Horie, R., Nishinaka, H., Tahara, D., and Yoshimoto, M., J. Alloys Compd., 2021, vol. 851, p. 156927.

    Article  CAS  Google Scholar 

  11. Lee, H., Liu, J., and Lee, C., IEEE Photon. Technol. Lett., 2018, vol. 30, p. 549.

    Article  CAS  Google Scholar 

  12. Wang, X., Chen, Z., Zhang, F., Saito, K., Tanaka, T., Nishio, M., and Guo, Q., AIP Adv., 2016, vol. 6, p. 015111.

    Article  Google Scholar 

  13. Zhang, F., Saito, K., Tanaka, T., Nishio, M., Arita, M., and Guo, Q., Appl. Phys. Lett., 2014, vol. 105, p. 162107.

    Article  Google Scholar 

  14. Anhar Uddin Bhuiyan, A.F.M., Feng, Z., Johnson, J.M., Huang, H.-L., Sarker, J., Zhu, M., Karim, M.R., Mazumder, B., Hwang, J., and Zhao, H., APL Mater., 2020, vol. 8, p. 031104.

    Article  CAS  Google Scholar 

  15. Mochalov, L.A., Logunov, A.A., and Kudryashov, M.A., J. Phys.: Conf. Ser., 2021, vol. 1967, no. 1, p. 012037.

    CAS  Google Scholar 

  16. Mochalov, L., Logunov, A., Gogova, D., Letnianchik, A., and Vorotyntsev, V., Opt. Quantum Electron., 2020, vol. 52, p. 510.

    Article  CAS  Google Scholar 

  17. Mochalov, L., Logunov, A., Kudryashov, M., Prokhorov, I., Sazanova, T., Yunin, P., Pryakhina, V., Vorotuntsev, I., Malyshev, V., Polyakov, A., and Pearton, S.J., J. Solid State Sci. Technol. 2021, vol. 10, p. 073002.

    Article  CAS  Google Scholar 

  18. Logunov, A., Mochalov, L., Gogova, D., and Vorotyntsev, V., 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, pp. 1−4, https://doi.org/10.1109/ICTON.2019.8840331

  19. Mochalov, L., Logunov, A., and Vorotyntsev, V., Sep. Purif. Technol., 2021, vol. 258, p. 118001.

    Article  CAS  Google Scholar 

  20. Mochalov, L., Logunov, A., Kitnis, A., Gogova, D., and Vorotyntsev, V., Sep. Purif. Technol., 2020, vol. 238, p. 116446.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 22-13-00053 “Development of scientific foundations for the technology of obtaining chemoresistive materials for electronic nose systems based on complex nanostructured oxide matrices.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vshivtsev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochalov, L.A., Kudryashov, M.A., Prokhorov, I.O. et al. A Study on the Process of Plasma-Enhanced Chemical Vapor Deposition of (AlxGa1 – x)2O3 Thin Films. High Energy Chem 57, 430–435 (2023). https://doi.org/10.1134/S0018143923050065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923050065

Keywords:

Navigation