Skip to main content
Log in

Experimental Study of Energy Separation in Compressible Air Cross Flow Over a Pair of Side-by-Side Circular Cylinders

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The influence of the distance between two circular side-by-side cylinders in a cross flow on the surface distribution of temperature and static pressure is experimentally studied. The studies were carried out at free-stream Mach numbers M equal to 0.295 and 0.365 and Reynolds numbers ReD equal to 6.4 × 104 and 7.9 × 104, respectively. The surface distributions of the pressure coefficient and the temperature recovery factor for one of the cylinders are obtained. It is shown that, depending on the distance between the cylinders, the pressure coefficient and temperature recovery factor can be both higher and lower than the values obtained in the flow over a single cylinder with the same free-stream parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Eckert, E.R.G., Energy separation in fluid streams, Int. Commun. Heat Mass Transf., 1986, vol. 13, no. 2, pp. 127–143. https://doi.org/10.1016/0735-1933(86)90053-9

    Article  Google Scholar 

  2. Eiamsa-ard, S. and Promvonge, P., Review of Ranque–Hilsch effects in vortex tubes, Renew. Sust. Energ. Rev., 2008, vol. 2, no. 7, pp. 1822–1842. https://doi.org/10.1016/j.rser.2007.03.006

    Article  MATH  Google Scholar 

  3. Raman, G. and Srinivasan, K., The powered resonance tube: From Hartmann’s discovery to current active flow control applications, Prog. Aerosp. Sci., 2009, vol. 45, nos. 4–5, pp. 97–123. https://doi.org/10.1016/j.paerosci.2009.05.001

    Article  Google Scholar 

  4. Leont’ev, A.I., Temperature stratification of supersonic gas flow, Physics. Doklady, 1997, vol. 42, no. 6, pp. 309–311.

    Google Scholar 

  5. Golubkina, I.V. and Osiptsov, A.N., Compressible gas-droplet flow and heat transfer behind a condensation shock in an expanding channel, Int. J. Therm. Sci., 2022, vol. 179, p. 107576. https://doi.org/10.1016/j.ijthermalsci.2022.107576

  6. Leontiev, A.I., Zditovets, A.G., Vinogradov, Y.A., Strongin, M.M., and Kiselev, N.A., Experimental investigation of the machine-free method of temperature separation of air flows based on the energy separation effect in a compressible boundary layer, Exp. Therm. Fluid Sci., 2017, vol. 88, pp. 202–219. https://doi.org/10.1016/j.expthermflusci.2017.05.021

    Article  Google Scholar 

  7. Vigdorovich, I.I. and Leont’ev, A.I., Energy separation of gases with low and high Prandtl numbers, Fluid Dynam., 2013, vol. 48, no. 6, pp. 811–826.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Vinogradov, Y.A., Zditovets, A.G., Leontiev, A.I., Popovich, S.S., and Strongin, M.M., Experimental research of shock wave processes influence on machineless gas flow energy separation effect, J. Phys. Conf. Ser., 2017, vol. 891, no. 1, p. 012080. https://doi.org/10.1088/1742-6596/891/1/012080

  9. Makarov, M.S. and Makarova, S.N., Efficiency of energy separation at compressible gas flow in a planar duct, Thermophys. Aeromech., 2013, vol. 20, no. 6, pp. 757–767.

    Article  ADS  Google Scholar 

  10. Leontiev, A.I., Zditovets, A.G., Kiselev, N.A., Vinogradov, Y.A., and Strongin, M.M., Experimental investigation of energy (temperature) separation of a high-velocity air flow in a cylindrical channel with a permeable wall, Exp. Therm. Fluid Sci., 2019, vol. 105, pp. 206–215. https://doi.org/10.1016/j.expthermflusci.2019.04.002

    Article  Google Scholar 

  11. Khazov, D.E., Leontiev, A.I., Zditovets, A.G., Kiselev, N.A., and Vinogradov, Y.A., Energy separation in a channel with permeable wall, Energy, 2022, vol. 239, pp. 122427. https://doi.org/10.1016/j.energy.2021.122427

  12. Biryuk, V.V., Veretennikov, S.V., Guryanov, A.I., and Piralishvili, S.A., Vortex effect. Technical applications, Moscow: Nauchtehlitizdat, 2014. ISBN:978-5-93728-143-2.

    Google Scholar 

  13. Eckert, E. and Weise, W., Messungen der temperaturverteilung auf der oberflache schnell angestromter unbeheizter korper, Forsch. Geb. Ing. Wesen., 1942, vol. 13, no. 6, pp. 246–254. https://doi.org/10.1007/BF02585343

    Article  Google Scholar 

  14. Ryan, L.F., Experiments on Aerodynamic Cooling, PhD thesis, Swiss Federal Institute of Technology, Zurich, 1951. https://doi.org/10.3929/ethz-a-000092033

  15. Popovich, S.S., Kiselev, N.A., Zditovets, A.G., and Vinogradov, Y.A., Experimental study of the adiabatic wall temperature of a cylinder in a supersonic cross flow, J. Phys. Conf. Ser., 2021, vol. 2039, no. 1, p. 012029. https://doi.org/10.1088/1742-6596/2039/1/012029

  16. Popovich, S.S., Leontiev, A.I., Luschik, V.G., and Makarova, M.S., Temperature recovery coefficient in a compressible turbulent boundary layer, Teplofizika Vysokikh Temperatur, 2022, vol. 60. no. 3. pp. 455–480. https://doi.org/10.31857/S0040364422030115

    Article  Google Scholar 

  17. Thomann, H., Measurements of the recovery temperature in the wake of a cylinder and of a wedge at Mach numbers between 0.5 and 3, Tech. Rep., Report 84, National Aeronautical Research Institute (FFA), Sweden, 1959.

    Google Scholar 

  18. Kurosaka, M., Gertz, J.B., Graham, J.E., Goodman, J.R., Sundaram, P., Riner, W.C., Kuroda, H., and Hankey, W.L., Energy separation in vortex street, J. Fluid Mech., 1987, vol. 178, pp. 1–29. https://doi.org/10.1017/S0022112087001095

    Article  ADS  Google Scholar 

  19. Kulkarni, K.S. and Goldstein, R.J., Energy separation in the wake of a cylinder: Effect of Reynolds number and acoustic resonance, Int. J. Heat Mass Transf., 2009, vol. 52, no. 17–18, pp. 3994–4000. https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.024

    Article  MATH  Google Scholar 

  20. Burazer, J., Energy separation in transient and steady-state flow across the cylinder, J. Theor. Appl. Mech., 2018, vol. 45, no. 1. pp. 83–94. https://doi.org/10.2298/TAM171130006B

    Article  MATH  Google Scholar 

  21. Aleksyuk, A.I. and Osiptsov, A.N., Direct numerical simulation of energy separation effect in the near wake behind a circular cylinder, Int. J. Heat Mass Transf., 2018, vol. 119, pp. 665–677. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.133

    Article  Google Scholar 

  22. Aleksyuk, A.I., The Eckert–Weise effect and energy separation under the flow interference behind side-by-side cylinders, J. Fluid Mech., 2021, vol. 915, p. A95. https://doi.org/10.1017/jfm.2021.128

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Aleksyuk, A.I., Regions of reduced total enthalpy in the near wake of a body in a viscous gas flow, Fluid Dynam., 2022, vol. 57, no. 1, pp. 66–76.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Aleksyuk, A.I., Influence of vortex street structure on the efficiency of energy separation, Int. J. Heat Mass Transf., 2019, vol. 135, pp. 284–293. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.103

    Article  Google Scholar 

  25. Zdravkovich, M.M., The effects of interference between circular cylinders in cross flow, J. Fluids Struct., 1987, vol. 1, no. 2, pp. 239–261. https://doi.org/10.1016/S0889-9746(87)90355-0

    Article  ADS  Google Scholar 

  26. Shapiro, A.H., The Dynamics and Thermodynamics of Compressible Fluid Flow, New York: The Ronald Press Company, 1953, vol. 1.

  27. GOST/R 54500.3-2011/ ISO/IEC Guide 98-3:2008. https://docs.cntd.ru/document/1200088855

  28. Williamson, C.H.K., Vortex Dynamics in the Cylinder Wake, Annu. Rev. Fluid Mech., 1996, vol. 28, no. 1, pp. 477–539. https://doi.org/10.1146/annurev.fl.28.010196.002401

    Article  ADS  MathSciNet  Google Scholar 

  29. Szepessy, S. and Bearman, P.W., Aspect ratio and end plate effects on vortex shedding from a circular cylinder, J. Fluid Mech., 1992, vol. 234, no. 1, p. 191. https://doi.org/10.1017/S0022112092000752

    Article  ADS  Google Scholar 

  30. Nagata, T., Noguchi, A., Kusama, K., Nonomura, T., Komuro, A., Ando, A., and Asai, K., Experimental investigation on compressible flow over a circular cylinder at Reynolds number of between 1000 and 5000, J. Fluid Mech., 2020, vol. 893, p. A13. https://doi.org/10.1017/jfm.2020.221

    Article  ADS  Google Scholar 

  31. Mahbub Alam, M., Moriya, M., and Sakamoto, H., Aerodynamic characteristics of two side-by-side circular cylinders and application of wavelet analysis on the switching phenomenon, J. Fluids Struct., 2003, vol. 18, nos. 3–4, pp. 325–346. https://doi.org/10.1016/j.jfluidstructs.2003.07.005

    Article  ADS  Google Scholar 

Download references

Funding

In the work, elements of the system for panoramic diagnostics of subsonic and supersonic gas flows, purchased under the Development Program of Moscow State University (Identifier no. 470040072), were used. The study was supported by the Russian Science Foundation grant No. 22-29-00443, https://rscf.ru/project/22-29-00443/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Vinogradov, A. G. Zditovets, N. A. Kiselev or S. S. Popovich.

Additional information

Translated by I.G. Brykina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradov, Y.A., Zditovets, A.G., Kiselev, N.A. et al. Experimental Study of Energy Separation in Compressible Air Cross Flow Over a Pair of Side-by-Side Circular Cylinders. Fluid Dyn 58, 252–262 (2023). https://doi.org/10.1134/S0015462822602017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822602017

Keywords:

Navigation