Skip to main content
Log in

Transformations of Imidazolium Ionic Liquids under the Influence of 60Co Gamma Radiation

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

The comparative stability of ionic liquids containing alkyl-substituted imidazolium and phosphonium cations on exposure to gamma radiation (60Co source) under the same conditions has been studied for the first time. It has been shown that when exposed to 60Co gamma radiation (an absorbed dose of up to 550 kGy) in the presence of air oxygen, phosphonium and imidazolium ionic liquids exhibit high radiolytic stability. Under these conditions, the yield of radiolytic products is no more than 1 wt %. At the same time, in contrast to phosphonium ionic liquids, imidazolium ionic liquids undergo radiolytic staining at absorbed doses in the range studied. Based on IR, UV, and 1H NMR spectroscopy and known literature data, an assumption has been made about the most probable mechanisms of transformation of imidazolium cations of an ionic liquid under the influence of gamma radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Scheme 2.
Fig. 2.
Scheme 3.

Similar content being viewed by others

REFERENCES

  1. Karelin, V.A., Petlin, I.V., Zhuravlev, N.A., Karelina, N.V., aand Rasputin, I.V., Khim. Interes. Ust. Razv., 2021, vol. 29, no. 3, pp. 320–325. https://doi.org/10.15372/KhUR2021308

    Article  Google Scholar 

  2. Emel'yanov, A.S., Belova, E.V., Ponomarev, A.V., and Myasoedov, B.F., Radiokhimiya, 2020, vol. 62, no. 5, pp. 391–395. https://doi.org/10.31857/S0033831120050044

    Article  Google Scholar 

  3. Belova, E.V., Skvortsov, I.V., Sokolov, I.P., and Myasoedov, B.F., Radiokhimiya, 2020, vol. 62, no. 6, pp. 498–504. https://doi.org/10.31857/S0033831120060052

    Article  Google Scholar 

  4. Kulagin, V.A., Kulagina, T.A., and Matyushenko, A.I., Zh. SFU, Tekh. Tekhnol., 2013, vol. 6, no. 2, pp. 123–149.

    Google Scholar 

  5. Ravi Kanth, M.V.S., R., Pushpavanam, S., Narasimhan, S., and Murty, B.N., Ind. Eng. Chem. Res., 2019, vol. 58, no. 45, pp. 20788–20796. https://doi.org/10.1021/acs.iecr.9b03899

    Article  CAS  Google Scholar 

  6. Gruzdev, M.S. and Kolker, A.M., in Ionnye zhidkosti: teoriya i praktika (Ionic Liquids: Theory and Practice), Tsivadze, A.Yu., Ed., Ivanovo: AO Ivanovskii Izdatel’skii Dom, 2019, p. 16.

  7. Kalecinski, J., Int. J. Radiat. Phys. Chem., 1972, vol. 4, p. 171. https://doi.org/10.1016/0020-7055(72)90043-5

    Article  CAS  Google Scholar 

  8. Allen, D., Baston, G., Bradley, A.E., Gorman, T., Haile, A., Hamblett, I., Hatter, J.E., Healey, M.J.F., Hodgson, B., Lewin, R., Lovell, K.V., Newton, B., Pitner, W.R., Rooney, D.W., Sanders, D., Seddon, K.R., Sims, H.E., and Thied, R.C., Green Chem., 2002, vol. 4, pp. 152–158. https://doi.org/10.1039/B111042J

    Article  CAS  Google Scholar 

  9. Berthon, L., Nikitenko, S.I., Bisel, I., Berthon, C., Faucon, M., Saucerotte, B., Zorz, N., and Moisy, P., Dalton Trans., 2006, vol. 21, pp. 2526–2534. https://doi.org/10.1039/B601111J

    Article  Google Scholar 

  10. Jagadeeswara Rao, Ch., Venkatesan, K.A., Tata, B.V.R., Nagarajan, K., Srinivasan, T.G., and Vasudeva Rao, P.R., Radiat. Phys. Chem., 2011, vol. 80, no. 5, p. 643. https://doi.org/10.1016/j.radphyschem.2011.01.012

    Article  CAS  Google Scholar 

  11. Tarabek, P., Liu, S., Haygarth, K., and Bartels, D.M., Radiat. Phys. Chem., 2009, vol. 78, pp. 168–172. https://doi.org/10.1016/j.radphyschem.2008.11.006

    Article  CAS  Google Scholar 

  12. Yuan, L., Peng, J., Xu, L., Zhai, M., Li, J., and Wei, G., Radiat. Phys. Chem., 2009, vol. 78, pp. 1133–1136. https://doi.org/10.1016/j.radphyschem.2009.07.003

    Article  CAS  Google Scholar 

  13. Dhiman, S.B., Goff, G.S., Runde, W., and LaVerne, J.A., J. Nucl. Mater., 2014, vol. 453, no. 1. https://doi.org/10.1016/j.jnucmat.2014.06.056

  14. Shkrob, I., Marin, T., Cheremisinov, S., and Wishart, J., J. Phys. Chem. B, 2011, vol. 115, no. 37, pp. 10927–10942. https://doi.org/10.1021/jp206579j

    Article  CAS  PubMed  Google Scholar 

  15. Shkrob, I., Marin, T., Cheremisinov, S., and Wishart, J., J. Phys. Chem. B, 2011, vol. 115, no. 14, pp. 3872–3888. https://doi.org/10.1021/jp2003062

    Article  CAS  PubMed  Google Scholar 

  16. Ao, Y.Y., Yuan, W.J., Yu, T.L., Peng, J., Li, J.Q., Zhai, M.L., and Zhao, L., Phys. Chem. Chem. Phys., 2013, vol. 17, no. 5, pp. 3457–3462.

    Article  Google Scholar 

  17. Guleria, A., Singh, A., Adhikari, S., and Sarkar, S.K., Dalton Trans., 2014, vol. 43, p. 609. https://doi.org/10.1039/C3DT51265G

    Article  CAS  PubMed  Google Scholar 

  18. Mincher, B.J. and Wishart, J.F., Solvent Extr., Ion. Exch., 2014, vol. 32, no. 6, p. 563–583.

    Article  CAS  Google Scholar 

  19. Ao, Y., Peng, J., Yuan, L., Cui, Z., Li, C., Li, J., and Zhai, M., Dalton Trans., 2013, vol. 42, no. 12, p. 4299–4305. https://doi.org/10.1039/C2DT32418K

    Article  CAS  PubMed  Google Scholar 

  20. Le Rouzo, G., Lamouroux, C., Dauvois, V., Dannoux, A., Legand, S., Durand, D., Moisy, P., and Moutiers, G., Dalton Trans., 2009, vol. 38, no. 31, p. 6175–6184. https://doi.org/10.1039/B903005K

    Article  Google Scholar 

  21. Wang, Y., Peng, J., Huang, W., Sheng, L., Li, J., Ao, Y., and Zhai, M., Radiat. Phys. Chem., 2019, vol. 165, pp. 130–134. https://doi.org/10.1016/j.radphyschem.2019.108408

    Article  CAS  Google Scholar 

  22. Morco, R., Joseph, J., and Wren, C., RSC Adv., 2015, vol. 5, no. 36, pp. 28570–28581. https://doi.org/10.1039/C4RA13115K

    Article  CAS  Google Scholar 

  23. Wang, S.J., Ao, Y.Y., Zhou, H.Y., Yuan, L.Y., Peng, J., and Zhai, M.L., Acta Phys.-Chim. Sin., 2014, vol. 30, pp. 1597–1604. https://doi.org/10.3866/PKU.WHXB201406271

    Article  CAS  Google Scholar 

  24. Yuan, L.Y., Peng, J., Zhai, M.L., Li, J.Q., and Wei, G.S., Radiat. Phys. Chem., 2009, vol. 78, pp. 737–739. https://doi.org/10.1016/j.radphyschem.2009.03.064

    Article  CAS  Google Scholar 

  25. Qi, M., Wu, Q., Li, Q., and Luo, Y., Radiat. Phys. Chem., 2008, vol. 77, pp. 877–883. https://doi.org/10.1016/j.radphyschem.2007.12.007

    Article  CAS  Google Scholar 

  26. Qi, M., Wu, G., Chen, S., and Liu, Y., Radiat. Res., 2007, vol. 167, pp. 508–514. https://doi.org/10.1667/RR0727.1

    Article  CAS  PubMed  Google Scholar 

  27. Shkrob, I.A., Chemerisov, S.D., and Wishart, J.F., J. Phys. Chem. B, 2007, vol. 111, no. 40, pp. 11786–11793. https://doi.org/10.1021/jp073619x

    Article  CAS  PubMed  Google Scholar 

  28. Ao, Y.Y., Xu, M., Peng, J., Li, J.Q., Zhai, M.L., and Wu, G.Z., J. Nucl. Sci. Tech., 2015, vol. 26, no. 3, Art. 030302. https://doi.org/10.13538/j.1001-8042/nst.26.030302

    Article  CAS  Google Scholar 

  29. Lestari, I., Rahayu, D., Nurani, D., Krisnandi, Y., and Budianto, E., AIP Conf. Proc., 2019, vol. 2168, no. 1, art. 020066. https://doi.org/10.1063/1.5132493

    Article  CAS  Google Scholar 

  30. Ferm, R., Riebsomer, J., Martin, E., and Daub, G., Org. Chem., 1953, vol. 18, no. 6, pp. 643–648. https://doi.org/10.1021/jo01134a004

    Article  CAS  Google Scholar 

  31. Yamamoto, T., Uemura, T., Tanimoto, A., and Sasaki, S., Macromolecules, 2003, vol. 36, no. 4, pp. 1047–1053. https://doi.org/10.1021/ma0211232

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the staff of the All-Russian Research Institute of Physical, Technical and Radio Engineering Measurements (VNIIFTRI) for the opportunity to use the MRKh-γ-100 setup and to the chief researcher of the Shared Facility Center of the Mendeleev University of Chemical Technology of Russia V.A. Polyakov for the work and provision of analytical data.

Funding

The work was supported by Mendeleev University of Chemical Technology of Russia (project no. 2020‑040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zanin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, N.P., Zanin, A.A. & Krivoborodov, E.G. Transformations of Imidazolium Ionic Liquids under the Influence of 60Co Gamma Radiation. Dokl Phys Chem 503, 39–44 (2022). https://doi.org/10.1134/S0012501622040017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501622040017

Keywords:

Navigation