Skip to main content
Log in

Numerical Study of Ethanol Suspension Combustion in Air

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes a numerical simulation of a laminar flame of a premixed mixture of ethanol and air at atmospheric pressure with the addition of a suspension of ethanol droplets. The initial fuel–oxidizer ratios in the gas phase are \(\phi_\mathrm{gas} = 0.844\) and 1.125. With account for the fuel in the liquid phase, the total equivalence ratios are \(\phi_\mathrm{tot} = 1.195\) and 1.476, respectively. The calculation is performed using the method of direct numerical simulation with a reduced chemical mechanism. Motion, heating, and evaporation of droplets are determined using the Lagrange approximation. The numerical simulation results are verified using experimental data (flame cone photographs and laser-induced fluorescence data). It is revealed that all the droplets evaporate in the flame front heating region and the presence of fuel in the liquid phase strongly increases the CO concentration both in the calculation and in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. T. Kondoh, A. Fukumoto, K. Ohsawa, and Y. Ohkubo, “An Assessment of a Multi-Dimensional Numerical Method to Predict the Flow in Internal Combustion Engines," SAE Trans. 94, 701–714 (1985).

    Google Scholar 

  2. B. Rochette, F. Collin-Bastiani, L. Gicquel, et al., “Influence of Chemical Schemes, Numerical Method and Dynamic Turbulent Combustion Modeling on LES of Premixed Turbulent Flames," Combust. Flame 191, 417–430 (2018); DOI: 10.1016/j.combustflame.2018.01.016.

    Article  Google Scholar 

  3. E. W. Curtis and P. V. Farrell, “A Numerical Study of High-Pressure Droplet Vaporization," Combust. Flame 90 (2), 85–102 (1992); DOI: 10.1016/0010-2180(92)90111-2.

    Article  ADS  Google Scholar 

  4. K. H. Arachchilage, M. Haghshenas, S. Park, et al., “Numerical Simulation of High-Pressure Gas Atomization of Two-Phase Flow: Effect of Gas Pressure on Droplet Size Distribution," Adv. Powder Technol. 30 (11), 2726–2732 (2019); DOI: 10.1016/j.apt.2019.08.019.

    Article  Google Scholar 

  5. C. Yan and S. K. Aggarwal, “A High-Pressure Droplet Model for Spray Simulations," J. Eng. Gas Turbines Power. 128 (3), 482–492 (2006); DOI: 10.1115/1.1915390.

    Article  Google Scholar 

  6. M. Renksizbulut and M. C. Yuen, “Numerical Study of Droplet Evaporation in a High-Temperature Stream," J. Heat Transfer 105 (2), 389–397 (1983); DOI: 10.1115/1.3245591.

    Article  Google Scholar 

  7. G. V. Kuznetsov, P. A. Kuybin, and P. A. Strizhak, “Estimation of the Numerical Values of the Evaporation Constants of Water Droplets Moving in a High-Temperature Gas Flow," Teplofiz. Vysok. Temp. 53 (2), 264–269 (2015) [High Temp. 53 (2), 254–258 (2015); DOI: 10.1134/S0018151X15020133].

    Article  Google Scholar 

  8. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, “Evaporation of Water Droplets in a High-Temperature Gaseous Medium," Inzh.-Fiz. Zh. 89 (1), 133–142 (2016) [J. Eng. Phys. Thermophys. 89 (1), 141–151 (2016); DOI: 10.1007/s10891-016-1361-4].

    Article  ADS  Google Scholar 

  9. S. Li, “Spray Stagnation Flames," Prog. Energy Combust. Sci. 23 (4), 303–347 (1997); DOI: 10.1016/S0360-1285(96)00013-5.

    Article  Google Scholar 

  10. G. Chen and A. Gomez, “Counterflow Diffusion Flames of Quasimonodisperse Electrostatic Sprays," Symp. (Int.) Combust. 24 (1), 1531–1539 (1992); DOI: 10.1016/S0082-0784(06)80178-5.

    Article  Google Scholar 

  11. N. Darabiha, F. Lacas, J. C. Rolon, and S. Candel, “Laminar Counterflow Spray Diffusion Flames: A Comparison between Experimental Results and Complex Chemistry Calculations," Combust. Flame 95 (3), 261–275 (1993); DOI: 10.1016/0010-2180(93)90131-L.

    Article  Google Scholar 

  12. Y. Levy and D. L. Bulzan, “On the Oscillation of Combustion of a Laminar Spray," Combust. Flame 100 (4), 543–549 (1995); DOI: 10.1016/0010-2180(94)00135-F.

    Article  Google Scholar 

  13. J. Burgoyne and L. Cohen, “The Effect of Drop Size on Flame Propagation in Liquid Aerosols," Proc. Roy. Soc. A 225 (1162), 375–392 (1954); DOI: 10.1098/rspa.1954.0210.

    Article  ADS  Google Scholar 

  14. C. Pera and J. Reveillon, “Direct Numerical Simulation of Spray Flame/Acoustic Interactions," Proc. Combust. Inst. 31 (2), 2283–2290 (2007); DOI: 10.1016/j.proci.2006.07.153.

    Article  Google Scholar 

  15. A. S. Lobasov, S. V. Alekseenko, D. M. Markovich, and V. M. Dulin, “Mass and Momentum Transport in the Near Field of Swirling Turbulent Jets. Effect of Swirl Rate," Int. J. Heat Fluid Flow. 83, 108539 (2020); DOI: 10.1016/j.ijheatfluidflow.2020.108539.

    Article  Google Scholar 

  16. A. S. Lobasov, R. V. Tolstoguzov, D. K. Sharaborin, et al., “On the Efficiency of Using Different Excitation Lines of (1–0) Two-Line OH Fluorescence for Planar Thermometry," Teplofiz. Aeromekh. 28 (5), 793–797 (2021) [Thermophys. Aeromech. 28 (5), 751–755 (2021); DOI: 10.1134/S0869864321050176].

    Article  ADS  Google Scholar 

  17. J. Luque and D. R. Crosley, “LIFBASE: Database and Spectral Simulation Program (Version 1.5)," SRI Int. Rep. MP 99 (009) (1999).

  18. OpenFOAM Home Page (2004); Available online: http://www.openfoam.com.

  19. A. Ghasemi Khourinia, Numerical Simulation of Non-Reactive Evaporative Diesel Sprays Using OpenFOAM (2017).

  20. M. Yousefifard, P. Ghadimi, and M. Mirsalim, “Numerical Simulation of Biodiesel Spray under Ultra-High Injection Pressure Using OpenFOAM," J. Brazilian Soc. Mech. Sci. Eng. 37 (2), 737–746 (2015); DOI: 10.1007/s40430-014-0199-y.

    Article  Google Scholar 

  21. Z.-F. Zhou, G.-Y. Lu, and B. Chen, “Numerical Study on the Spray and Thermal Characteristics of R404A Flashing Spray Using OpenFOAM," Int. J. Heat Mass Transfer. 117, 1312–1321 (2018); DOI: 10.1016/j.ijheatmasstransfer.2017.10.095.

    Article  Google Scholar 

  22. M. Y. Hrebtov, M. S. Bobrov, D. B. Zhakebayev, and K. K. Karzhaubayev, “Mixed Lagrangian–Eulerian Simulation of Interaction between a Shockwave and a Cloud of Water Droplets," J. Eng. Thermophys. 29 (2), 254–263 (2020); DOI: 10.1134/S1810232820020071.

    Article  Google Scholar 

  23. P. J. O’Rourke, “Collective Drop Effects on Vaporizing Liquid Sprays," Ph. D. Thesis (Princeton Univ., 1981).

  24. W. E. Ranz, “Evaporation From Drops. Parts I & II," Chem. Eng. Prog. 48, 141–146, 173–180 (1952).

    Google Scholar 

  25. G. Krishnamoorthy, “A Computationally Efficient P1 Radiation Model for Modern Combustion Systems Utilizing Pre-Conditioned Conjugate Gradient Methods," Appl. Therm. Eng. 119, 197–206 (2017); DOI: 10.1016/j.applthermaleng.2017.03.055.

    Article  Google Scholar 

  26. S. Kim and J. Kim, “Effect of Radiation Model on Simulation of Water Vapor–Hydrogen Premixed Flame Using Flamelet Combustion Model in OpenFOAM," Nucl. Eng. Technol. 54 (4), 1321–1335 (2022); DOI: 10.1016/j.net.2021.09.042.

    Article  Google Scholar 

  27. S. Haider, K. M. Pang, A. Ivarsson, and J. Schramm, “Combustion and Radiation Modeling of Laminar Premixed Flames Using OpenFOAM: A Numerical Investigation of Radiative Heat Transfer in the RADIADE Project," in Conseil International des Machines a Combustion, CIMAC Congress, 2013, Paper No. 274.

  28. P. Rivière and A. Soufiani, “Updated Band Model Parameters for H2O, CO2, CH4 and CO Radiation at High Temperature," Int. J. Heat Mass Transfer. 55 (13–14), 3349–3358 (2012); DOI: 10.1016/j.ijheatmasstransfer.2012.03.019.

    Article  Google Scholar 

  29. G. R. Freeman, Radiation Chemistry of Ethanol: A Review of Data on Yields, Reaction Rate Parameters, and Spectral Properties of Transients (National Bureau of Standards, USA, 1974); DOI: 10.6028/NBS.NSRDS.48.

  30. A. Millán-Merino, E. Fernández-Tarrazo, M. Sánchez-Sanz, and F. A. Williams, “A Multipurpose Reduced Mechanism for Ethanol Combustion," Combust. Flame 193, 112–122 (2018); DOI: 10.1016/j.combustflame.2018.03.005.

    Article  Google Scholar 

  31. N. Leplat, P. Dagaut, C. Togbé, and J. Vandooren, “Numerical and Experimental Study of Ethanol Combustion and Oxidation in Laminar Premixed Flames and in Jet-Stirred Reactor," Combust. Flame 158 (4), 705–725 (2011); DOI: 10.1016/j.combustflame.2010.12.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ponomarev.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 2, pp. 7-15. https://doi.org/10.15372/FGV20230202.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarev, A.A., Sharaborin, D.K., Khrebtov, M.Y. et al. Numerical Study of Ethanol Suspension Combustion in Air. Combust Explos Shock Waves 59, 129–136 (2023). https://doi.org/10.1134/S0010508223020028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223020028

Keywords

Navigation