Skip to main content
Log in

Structure of an Ice-Binding Protein from Myoxocephalus octodecemspinosus Determined by Molecular Dynamics and Based on Circular Dichroism Spectra

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The production of proteins capable of binding ice is one of the strategies evolved in biological organisms for survival in cold ecosystems where there is a risk of freezing. These proteins have an important ability to bind to the surface of ice, influence its growth and prevent cell damage and death. To understand the nature of interaction of such proteins with ice, it is necessary to know their structure. This study contributes to the understanding of the structural and dynamic mechanisms of action of ice-binding proteins that ensure the adaptation of organisms in critical conditions. The study of the contribution of proteins capable of binding ice to adaptation to cold conditions opens up wide opportunities in solving a number of important medical problems, including the development of effective cellular and organ cryoprotectants, as well as long-term storage of food products without loss of their consumer properties in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. H. Kawahara, in Psychrophiles: From Biodiversity to Biotechnology, Ed. by R. Margesin (Springer-Verlag, Cham, 2017), pp. 237–257.

    Google Scholar 

  2. J. S. H. Lorv, D. R. Rose, and B. R. Glick, Scientifica (Cairo) 2014, 976895 (2014).

    Google Scholar 

  3. M. Bar Dolev, I. Braslavsky, and P. L. Davies, Annu. Rev. Biochem. 85, 515 (2016).

    Article  Google Scholar 

  4. A. Białkowska, E. Majewska, A. Olczak, and A. Twarda-Clapa, Biomolecules 10 (2), 274 (2020).

    Article  Google Scholar 

  5. A. L. DeVries and D. E. Wohlschlag, Science 163 (3871), 1073 (1969).

    Article  ADS  Google Scholar 

  6. C.-H. C. Cheng, Curr. Opin. Genet. Development 8 (6), 715 (1998).

    Article  Google Scholar 

  7. C. Deng, C.-H. C. Cheng, H. Ye, et al., Proc. Natl. Acad. Sci. U. S. A. 107 (50), 21593 (2010).

    Article  ADS  Google Scholar 

  8. D. Doucet, V. K. Walker, and W. Qin, Cell. Mol. Life Sci. 66 (8), 1404 (2009).

    Article  Google Scholar 

  9. M. Bredow and V. K. Walker, Ice-binding proteins in plants, Front. Plant Sci. 8, 2153 (2017).

    Article  Google Scholar 

  10. G. Deng, D. W. Andrews, and R. A. Laursen, FEBS Lett. 402, 17 (1997).

    Article  Google Scholar 

  11. W. K. Low, Q. Lin, C. Stathakis, et al., J. Biol. Chem. 276 (15), 11582 (2001).

    Article  Google Scholar 

  12. Z. Zhao, G. Deng, Q. Lui, and R. A. Laursen, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1382 (2), 177 (1998).

    Article  Google Scholar 

  13. A. Y. Chang, V. W. Chau, J. A. Landas, and Y. Pang, JEMI 1, 22 (2017).

    Google Scholar 

  14. Technical Bulletin, ProteaseMAX(TM) Surfactant, Trypsin Enhancer (Promega Corporation, 2015).

  15. A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, Anal. Chem. 68 (5), 850 (1996).

    Article  Google Scholar 

  16. J. Jumper, R. Evans, A. Pritzel, et al., Nature 596 (7873), 583 (2021).

    Article  ADS  Google Scholar 

  17. A. Waterhouse, M. Bertoni, S. Bienert, et al., Nucleic Acids Res. 46 (W1), W296 (2018).

    Article  Google Scholar 

  18. D. Case, K. Belfon, S. Ben-Shalom, et al., Amber20 (Univ. California, San Francisco, 2020).

    Google Scholar 

  19. A. W. Gotz, M. J. Williamson, D. Xu, et al., J. Chem. Theory Comput. 8 (5), 1542 (2012).

    Article  Google Scholar 

  20. R. Salomon-Ferrer, A. W. Gotz, D. Poole, et al., J. Chem. Theory Comput. 9 (9), 3878 (2013).

    Article  Google Scholar 

  21. Y. Khalak, B. Baumeier, and M. Karttunen, J. Chem. Phys. 149 (22), 224507 (2018).

    Article  ADS  Google Scholar 

  22. M. Matsumoto, T. Yagasaki, and H. Tanaka, J. Comput. Chem. 39 (1), 61 (2018).

    Article  Google Scholar 

  23. E. F. Pettersen, T. D. Goddard, and C. C. Huang, J. Comput. Chem. 25 (13), 1605 (2004).

    Article  Google Scholar 

  24. D. R. Roe and T. E. Cheatham, J. Chem. Theory Comput. 9 (7), 3084 (2013).

    Article  Google Scholar 

  25. B. Bogdanov and R. D. Smith, Mass Spectrom. Rev. 24 (2), 168 (2005).

    Article  ADS  Google Scholar 

  26. G. Deng and R. A. Laursen, Biochim. Biophys. Acta 1388 (2), 305 (1998).

    Article  Google Scholar 

  27. C. Tian, K. Kasavajhala, K. A. A. Belfon, et al., J. Chem. Theory Comput. 16 (1), 528 (2020).

    Article  Google Scholar 

  28. C. Vega, E. Sanz, and J. L. F. Abascal, J. Chem. Phys. 122 (11), 114507 (2005).

    Article  ADS  Google Scholar 

  29. A. S. Oude Vrielink, A. Aloi, L. L. C. Olijve, and I. K. Voets, Biointerphases 11 (1), 18906 (2016).

    Article  Google Scholar 

Download references

Funding

The research was carried out with the financial support of the Russian Science Foundation, project no. 23-24-00256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.V. Baranova.

Ethics declarations

CONFLICT OF INTEREST

The authors of this article declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain studies involving human and animal subjects.

Additional information

Translated by E.Puchkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: MALDI-TOF, matrix-assisted laser desorption/ionization time-of-flight.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleinik, G.A., Zhdanova, P., Koval, V.V. et al. Structure of an Ice-Binding Protein from Myoxocephalus octodecemspinosus Determined by Molecular Dynamics and Based on Circular Dichroism Spectra. BIOPHYSICS 68, 513–518 (2023). https://doi.org/10.1134/S0006350923040152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350923040152

Keywords:

Navigation