Skip to main content

Advertisement

Log in

Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

G protein-coupled receptors (GPCRs) are an important family of membrane proteins responsible for many physiological functions in human body. High resolution GPCR structures are required to understand their molecular mechanisms and perform rational drug design, as GPCRs play a crucial role in a variety of diseases. That is difficult to obtain for the wild-type proteins because of their low stability. In this review, we discuss how this problem can be solved by using protein design strategies developed to obtain homogeneous stabilized GPCR samples for crystallization and cryoelectron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

BRIL:

thermostabilized apocytochrome b562

cryo-EM:

cryoelectron microscopy

GDP:

guanosine diphosphate

GPCR:

G protein-coupled receptor

GPCRdb:

database containing information on modern studies of GPCR (https://gpcrdb.org/)

GRK:

G protein-coupled receptor kinase

LCP:

lipid cubic phase

MBP:

maltose-binding protein

Nb:

nanobody

References

  1. Sriram, K., and Insel, P. A. (2018) G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol., 93, 251-258, https://doi.org/10.1124/mol.117.111062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B., and Gloriam, D. E. (2017) Trends in GPCR drug discovery: new agents, targets and indications, Nat. Rev. Drug Discov., 16, 829-842, https://doi.org/10.1038/nrd.2017.178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Montfort, R. L. M., and Workman, P. (2017) Structure-based drug design: aiming for a perfect fit, Essays Biochem., 61, 431-437, https://doi.org/10.1042/EBC20170052.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kermani, A. A. (2021) A guide to membrane protein X-ray crystallography, FEBS J., 288, 5788-5804, https://doi.org/10.1111/febs.15676.

    Article  CAS  PubMed  Google Scholar 

  5. Callaway, E. (2020) Revolutionary cryo-EM is taking over structural biology, Nature, 578, 201, https://doi.org/10.1038/d41586-020-00341-9.

    Article  CAS  PubMed  Google Scholar 

  6. Martynowycz, M. W., and Gonen, T. (2021) Studying membrane protein structures by MicroED, Methods Mol. Biol., 2302, 137-151, https://doi.org/10.1007/978-1-0716-1394-8_8.

    Article  CAS  PubMed  Google Scholar 

  7. Danmaliki, G. I., and Hwang, P. M. (2020) Solution NMR spectroscopy of membrane proteins, Biochim. Biophys. Acta Biomembr., 1862, 183356, https://doi.org/10.1016/j.bbamem.2020.183356.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, K., Zhang, J., Gao, Z. G., Zhang, D., Zhu, L., Han, G. W., Moss, S. M., Paoletta, S., Kiselev, E., Lu, W., et al. (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug, Nature, 508, 115-118, https://doi.org/10.1038/nature13083.

    Article  CAS  Google Scholar 

  9. Yasuda, S., Kajiwara, Y., Toyoda, Y., Morimoto, K., Suno, R., Iwata, S., Kobayashi, T., Murata, T., and Kinoshita, M. (2017) Hot-spot residues to be mutated common in G protein-coupled receptors of class A: identification of thermostabilizing mutations followed by determination of three-dimensional structures for two example receptors, J. Phys. Chem. B, 121, 6341-6350, https://doi.org/10.1021/acs.jpcb.7b02997.

    Article  CAS  PubMed  Google Scholar 

  10. Katritch, V., Fenalti, G., Abola, E. E., Roth, B. L., Cherezov, V., and Stevens, R. C. (2014) Allosteric sodium in class A GPCR signaling, Trends Biochem. Sci., 39, 233-244, https://doi.org/10.1016/j.tibs.2014.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, F., Yang, L., Hang, K., Laursen, M., Wu, L., Han, G. W., Ren, Q., Roed, N. K., Lin, G., Hanson, M. A., et al. (2020) Full-length human GLP-1 receptor structure without orthosteric ligands, Nat. Commun., 11, 1272, https://doi.org/10.1038/s41467-020-14934-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsutsumi, N., Qu, Q., Mavri, M., Baggesen, M. S., Maeda, S., Waghray, D., Berg, C., Kobilka, B. K., Rosenkilde, M. M., Skiniotis, G., et al. (2021) Structural basis for the constitutive activity and immunomodulatory properties of the Epstein-Barr virus-encoded G protein-coupled receptor BILF1, Immunity, 54, 1405-1416, https://doi.org/10.1016/j.immuni.2021.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G. F., Foon, S. T., Kobilka, T. S., Choi, H. J., Kuhn, P., Weis, W. I., Kobilka, B. K., et al. (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor, Science, 318, 1258-1265, https://doi.org/10.1126/science.1150577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, C., Srinivasan, Y., Arlow, D. H., Fung, J. J., Palmer, D., Zheng, Y., Green, H. F., Pandey, A., Dror, R. O., Shaw, D. E., et al. (2012) High-resolution crystal structure of human protease-activated receptor 1, Nature, 492, 387-392, https://doi.org/10.1038/nature11701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., White, T. A., Yefanov, O., Han, G. W., et al. (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser, Nature, 523, 561-567, https://doi.org/10.1038/nature14656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patwardhan, A., Cheng, N., and Trejo, J. (2021) Post-translational modifications of G protein-coupled receptors control cellular signaling dynamics in space and time, Pharmacol. Rev., 73, 120-151, https://doi.org/10.1124/pharmrev.120.000082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsumura, M., Signor, G., and Matthews, B. W. (1989) Substantial increase of protein stability by multiple disulphide bonds, Nature, 342, 291-293, https://doi.org/10.1038/342291a0.

    Article  CAS  PubMed  Google Scholar 

  18. Darby, N., and Creighton, T. E. (1995) Disulfide bonds in protein folding and stability, Methods Mol. Biol., 40, 219-252, https://doi.org/10.1385/0-89603-301-5:219.

    Article  CAS  PubMed  Google Scholar 

  19. Zavodszky, M., Chen, C.-W., Huang, J.-K., Zolkiewski, M., Wen, L., and Krishnamoorthi, R. (2001) Disulfide bond effects on protein stability: designed variants of Cucurbita maxima trypsin inhibitor-V, Protein Sci., 10, 149-160, https://doi.org/10.1110/ps.26801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Standfuss, J., Xie, G., Edwards, P. C., Burghammer, M., Oprian, D. D., and Schertler, G. F. X. (2007) Crystal structure of a thermally stable rhodopsin mutant, J. Mol. Biol., 372, 1179-1188, https://doi.org/10.1016/j.jmb.2007.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie, G., Gross, A. K., and Oprian, D. D. (2003) An opsin mutant with increased thermal stability, Biochemistry, 42, 1995-2001, https://doi.org/10.1021/bi020611z.

    Article  CAS  PubMed  Google Scholar 

  22. Standfuss, J., Zaitseva, E., Mahalingam, M., and Vogel, R. (2008) Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin, J. Mol. Biol., 380, 145-157, https://doi.org/10.1016/j.jmb.2008.04.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salam, N. K., Adzhigirey, M., Sherman, W., Pearlman, D. A., and Thirumalai, D. (2014) Structure-based approach to the prediction of disulfide bonds in proteins, Prot. Engin. Design Select., 27, 365-374, https://doi.org/10.1093/protein/gzu017.

    Article  CAS  Google Scholar 

  24. Chrencik, J. E., Roth, C. B., Terakado, M., Kurata, H., Omi, R., Kihara, Y., Warshaviak, D., Nakade, S., Asmar-Rovira, G., Mileni, M., et al. (2015) Crystal structure of antagonist bound human lysophosphatidic acid receptor 1, Cell, 161, 1633-1643, https://doi.org/10.1016/j.cell.2015.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song, G., Yang, D., Wang, Y., De Graaf, C., Zhou, Q., Jiang, S., Liu, K., Cai, X., Dai, A., Lin, G., et al. (2017) Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators, Nature, 546, 312-315, https://doi.org/10.1038/nature22378.

    Article  CAS  PubMed  Google Scholar 

  26. Morrison, K. L., and Weiss, G. A. (2001) Combinatorial alanine-scanning, Curr. Opin. Chem. Biol., 5, 302-307, https://doi.org/10.1016/S1367-5931(00)00206-4.

    Article  CAS  PubMed  Google Scholar 

  27. Cunningham, B. C., and Wells, J. A. (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis, Science, 244, 1081-1085, https://doi.org/10.1126/science.2471267.

    Article  CAS  PubMed  Google Scholar 

  28. Blaber, M., Zhang, X. J., and Matthews, B. W. (1993) Structural basis of amino acid α helix propensity, Science, 260, 1637-1640, https://doi.org/10.1126/science.8503008.

    Article  CAS  PubMed  Google Scholar 

  29. Serrano-Vega, M. J., Magnani, F., Shibata, Y., and Tate, C. G. (2008) Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form, Proc. Natl. Acad. Sci. USA, 105, 877-882, https://doi.org/10.1073/pnas.0711253105.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Magnani, F., Shibata, Y., Serrano-Vega, M. J., and Tate, C. G. (2008) Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor, Proc. Natl. Acad. Sci. USA, 105, 10744-10749, https://doi.org/10.1073/pnas.0804396105.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lomasneys, J. W., Leeb-lundberg, L. M. F., Cotecchiag, S., Regan, J. W., Debernardisli, J. F., Caron, M. G., and Lefkowitz, R. J. (1986) Mammalian a1-adrenergic receptor, J. Biol. Chem., 261, 7710-7716, https://doi.org/10.1016/S0021-9258(19)57458-0.

    Article  Google Scholar 

  32. Huang, H., and Tao, Y. X. (2014) Functions of the dry motif and intracellular loop 2 of human melanocortin 3 receptor, J. Mol. Endocrinol., 53, 319-330, https://doi.org/10.1530/JME-14-0184.

    Article  CAS  PubMed  Google Scholar 

  33. Shibata, Y., Gvozdenovic-Jeremic, J., Love, J., Kloss, B., White, J. F., Grisshammer, R., and Tate, C. G. (2013) Optimising the combination of thermostabilising mutations in the neurotensin receptor for structure determination, Biochim. Biophys. Acta Biomembr., 1828, 1293-1301, https://doi.org/10.1016/j.bbamem.2013.01.008.

    Article  CAS  Google Scholar 

  34. Robertson, N., Jazayeri, A., Errey, J., Baig, A., Hurrell, E., Zhukov, A., Langmead, C. J., Weir, M., and Marshall, F. H. (2011) The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery, Neuropharmacology, 60, 36-44, https://doi.org/10.1016/j.neuropharm.2010.07.001.

    Article  CAS  PubMed  Google Scholar 

  35. Magnani, F., Serrano-Vega, M. J., Shibata, Y., Abdul-Hussein, S., Lebon, G., Miller-Gallacher, J., Singhal, A., Strege, A., Thomas, J. A., and Tate, C. G. (2016) A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies, Nat. Protocols, 11, 1554-1571, https://doi.org/10.1038/nprot.2016.088.

    Article  PubMed  Google Scholar 

  36. Warne, T., Serrano-Vega, M. J., Baker, J. G., Moukhametzianov, R., Edwards, P. C., Henderson, R., Leslie, A. G. W., Tate, C. G., and Schertler, G. F. X. (2008) Structure of a β1-adrenergic G-protein-coupled receptor, Nature, 454, 486-491, https://doi.org/10.1038/nature07101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sato, T., Baker, J., Warne, T., Brown, G. A., Leslie, A. G. W., Congreve, M., and Tate, C. G. (2015) Pharmacological analysis and structure determination of 7-methylcyanopindolol-bound β1-adrenergic receptor, Mol. Pharmacol., 88, 1024-1034, https://doi.org/10.1124/mol.115.101030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng, R. K. Y., Fiez-Vandal, C., Schlenker, O., Edman, K., Aggeler, B., Brown, D. G., Brown, G. A., Cooke, R. M., Dumelin, C. E., Doré, A. S., et al. (2017) Structural insight into allosteric modulation of protease-activated receptor 2, Nature, 545, 112-115, https://doi.org/10.1038/nature22309.

    Article  CAS  PubMed  Google Scholar 

  39. Rappas, M., Ali, A. A. E., Bennett, K. A., Brown, J. D., Bucknell, S. J., Congreve, M., Cooke, R. M., Cseke, G., De Graaf, C., Doré, A. S., et al. (2020) Comparison of Orexin 1 and Orexin 2 ligand binding modes using X-ray crystallography and computational analysis, J. Med. Chem., 63, 1528-1543, https://doi.org/10.1021/acs.jmedchem.9b01787.

    Article  CAS  PubMed  Google Scholar 

  40. Brown, A. J. H., Bradley, S. J., Marshall, F. H., Brown, G. A., Bennett, K. A., Brown, J., Cansfield, J. E., Cross, D. M., de Graaf, C., Hudson, B. D., et al. (2021) From structure to clinic: design of a muscarinic M1 receptor agonist with potential to treatment of Alzheimer’s disease, Cell, 184, 5886-5901.e22, https://doi.org/10.1016/j.cell.2021.11.001.

    Article  CAS  PubMed  Google Scholar 

  41. Warne, T., Moukhametzianov, R., Baker, J. G., Nehmé, R., Edwards, P. C., Leslie, A. G. W., Schertler, G. F. X., and Tate, C. G. (2011) The structural basis for agonist and partial agonist action on a β1-adrenergic receptor, Nature, 469, 241-245, https://doi.org/10.1038/nature09746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Doré, A. S., Robertson, N., Errey, J. C., Ng, I., Hollenstein, K., Tehan, B., Hurrell, E., Bennett, K., Congreve, M., Magnani, F., et al. (2011) Structure of the adenosine A 2A receptor in complex with ZM241385 and the xanthines XAC and caffeine, Structure, 19, 1283-1293, https://doi.org/10.1016/j.str.2011.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moukhametzianov, R., Warne, T., Edwards, P. C., Serrano-Vega, M. J., Leslie, A. G. W., Tate, C. G., and Schertler, G. F. X. (2011) Two distinct conformations of helix 6 observed in antagonist-bound structures of a β1-adrenergic receptor, Proc. Natl. Acad. Sci. USA, 108, 8228-8232, https://doi.org/10.1073/pnas.1100185108.

    Article  PubMed  PubMed Central  Google Scholar 

  44. White, J. F., Noinaj, N., Shibata, Y., Love, J., Kloss, B., Xu, F., Gvozdenovic-Jeremic, J., Shah, P., Shiloach, J., Tate, C. G., et al. (2012) Structure of the agonist-bound neurotensin receptor, Nature, 490, 508-513, https://doi.org/10.1038/nature11558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Warne, T., Edwards, P. C., Leslie, A. G. W., and Tate, C. G. (2012) Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol, Structure, 20, 841-849, https://doi.org/10.1016/j.str.2012.03.014.

    Article  CAS  PubMed  Google Scholar 

  46. Christopher, J. A., Brown, J., Doré, A. S., Errey, J. C., Koglin, M., Marshall, F. H., Myszka, D. G., Rich, R. L., Tate, C. G., Tehan, B., et al. (2013) Biophysical fragment screening of the β1-adrenergic receptor: Identification of high affinity arylpiperazine leads using structure-based drug design, J. Med. Chem., 56, 3446-3455, https://doi.org/10.1021/jm400140q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Egloff, P., Hillenbrand, M., Klenk, C., Batyuk, A., Heine, P., Balada, S., Schlinkmann, K. M., Scott, D. J., Schütz, M., and Plückthun, A. (2014) Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli, Proc. Natl. Acad. Sci. USA, 111, E655-E662, https://doi.org/10.1073/pnas.1317903111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller-Gallacher, J. L., Nehmé, R., Warne, T., Edwards, P. C., Schertler, G. F. X., Leslie, A. G. W., and Tate, C. G. (2014) The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor, PLoS One, 9, e92727, https://doi.org/10.1371/journal.pone.0092727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Waltenspühl, Y., Jeliazkov, J. R., Kummer, L., and Plückthun, A. (2021) Directed evolution for high functional production and stability of a challenging G protein-coupled receptor, Sci. Rep., 11, 8630, https://doi.org/10.1038/s41598-021-87793-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sarkar, C. A., Dodevski, I., Kenig, M., Dudli, S., Mohr, A., Hermans, E., and Plückthun, A. (2008) Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity, Proc. Natl. Acad. Sci. USA, 105, 14808-14813, https://doi.org/10.1073/pnas.0803103105.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Scott, D. J., and Plückthun, A. (2013) Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cells, J. Mol. Biol., 425, 662-677, https://doi.org/10.1016/j.jmb.2012.11.015.

    Article  CAS  PubMed  Google Scholar 

  52. Schlinkmann, K. M., Hillenbrand, M., Rittner, A., Künz, M., Strohner, R., and Plückthun, A. (2012) Maximizing detergent stability and functional expression of a GPCR by exhaustive recombination and evolution, J. Mol. Biol., 422, 414-428, https://doi.org/10.1016/j.jmb.2012.05.039.

    Article  CAS  PubMed  Google Scholar 

  53. Schütz, M., Schöppe, J., Sedlák, E., Hillenbrand, M., Nagy-Davidescu, G., Ehrenmann, J., Klenk, C., Egloff, P., Kummer, L., and Plückthun, A. (2016) Directed evolution of G protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts, Sci. Rep., 6, 21508, https://doi.org/10.1038/srep21508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Waltenspühl, Y., Schöppe, J., Ehrenmann, J., Kummer, L., and Plückthun, A. (2020) Crystal structure of the human oxytocin receptor, Sci. Adv., 6, eabb5419, https://doi.org/10.1126/sciadv.abb5419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ehrenmann, J., Schöppe, J., Klenk, C., Rappas, M., Kummer, L., Doré, A. S., and Plückthun, A. (2018) High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist, Nat. Struct. Mol. Biol., 25, 1086-1092, https://doi.org/10.1038/s41594-018-0151-4.

    Article  CAS  PubMed  Google Scholar 

  56. Claff, T., Yu, J., Blais, V., Patel, N., Martin, C., Wu, L., Han, G. W., Holleran, B. J., Van der Poorten, O., White, K. L., et al. (2019) Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists, Sci. Adv., 5, eaax9115, https://doi.org/10.1126/sciadv.aax9115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meltzer, M., Zvagelsky, T., Hadad, U., Papo, N., and Engel, S. (2022) Yeast-based directed-evolution for high-throughput structural stabilization of G protein-coupled receptors (GPCRs), Sci. Rep., 12, 8657, https://doi.org/10.1038/s41598-022-12731-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Popov, P., Peng, Y., Shen, L., Stevens, R. C., Cherezov, V., Liu, Z. J., and Katritch, V. (2018) Computational design of thermostabilizing point mutations for G protein-coupled receptors, eLife, 7, e34729, https://doi.org/10.7554/eLife.34729.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Arey, B. J. (2012) Glycosylation. The Role of Glycosylation in Receptor Signaling, IntechOpen, London, pp. 273-286, https://doi.org/10.5772/50262.

  60. Pándy-Szekeres, G., Munk, C., Tsonkov, T. M., Mordalski, S., Harpsøe, K., Hauser, A. S., Bojarski, A. J., and Gloriam, D. E. (2018) GPCRdb in 2018: Adding GPCR structure models and ligands, Nucleic Acids Res., 46, D440-D446, https://doi.org/10.1093/nar/gkx1109.

    Article  CAS  PubMed  Google Scholar 

  61. Hamby, S. E., and Hirst, J. D. (2008) Prediction of glycosylation sites using random forests, BMC Bioinform., 9, 500, https://doi.org/10.1186/1471-2105-9-500.

    Article  CAS  Google Scholar 

  62. Xie, H. L., Fu, L., and Nie, X. Du. (2013) Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou’s PseAAC, Prot. Engin. Design Select., 26, 735-742, https://doi.org/10.1093/protein/gzt042.

    Article  CAS  Google Scholar 

  63. West, G. M., Chien, E. Y. T., Katritch, V., Gatchalian, J., Chalmers, M. J., Stevens, R. C., and Griffin, P. R. (2011) Ligand-dependent perturbation of the conformational ensemble for the GPCR β 2 adrenergic receptor revealed by HDX, Structure, 19, 1424-1432, https://doi.org/10.1016/j.str.2011.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chun, E., Thompson, A. A., Liu, W., Roth, C. B., Griffith, M. T., Katritch, V., Kunken, J., Xu, F., Cherezov, V., Hanson, M. A., et al. (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors, Structure, 20, 967-976, https://doi.org/10.1016/j.str.2012.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guan, X. M., Kobilka, T. S., and Kobilka, B. K. (1992) Enhancement of membrane insertion and function in a type IIIb membrane protein following introduction of a cleavable signal peptide, J. Biol. Chem., 267, 21995-21998, https://doi.org/10.1016/S0021-9258(18)41623-7.

    Article  CAS  PubMed  Google Scholar 

  66. Quitterer, U., Pohl, A., Langer, A., Koller, S., and AbdAlla, S. (2011) A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor, Biochem. Biophys. Res. Commun., 409, 544-549, https://doi.org/10.1016/j.bbrc.2011.05.041.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, S., Hansen, D. T., Martin-Garcia, J. M., Zook, J. D., Pan, S., Craciunescu, F. M., Burnett, J. C., and Fromme, P. (2022) Purification, characterization, and preliminary serial crystallography diffraction advances structure determination of full-length human particulate guanylyl cyclase A receptor, Sci. Rep., 12, 11824, https://doi.org/10.1038/s41598-022-15798-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koehl, A., Hu, H., Feng, D., Sun, B., Zhang, Y., Robertson, M. J., Chu, M., Kobilka, T. S., Laeremans, T., Steyaert, J., et al. (2019) Structural insights into the activation of metabotropic glutamate receptors., Nature, 566, 79-84, https://doi.org/10.1038/s41586-019-0881-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Watkins, L. R., and Orlandi, C. (2021) In vitro profiling of orphan G protein coupled receptor (GPCR) constitutive activity, Br. J. Pharmacol., 178, 2963-2975, https://doi.org/10.1111/bph.15468.

    Article  CAS  PubMed  Google Scholar 

  70. Sherrill, J. D., and Miller, W. E. (2006) G protein-coupled receptor (GPCR) kinase 2 regulates agonist-independent Gq/11 signaling from the mouse cytomegalovirus GPCR M33, J. Biol. Chem., 281, 39796-39805, https://doi.org/10.1074/jbc.M610026200.

    Article  CAS  PubMed  Google Scholar 

  71. Böhme, I., and Beck-Sickinger, A. G. (2009) Illuminating the life of GPCRs, Cell Commun. Signal., 7, 16, https://doi.org/10.1186/1478-811X-7-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kobilka, B. K. (1995) Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor, Anal. Biochem., 231, 269-271, https://doi.org/10.1006/abio.1995.1533.

    Article  CAS  PubMed  Google Scholar 

  73. Prickett, K. S., Amberg, D. C., and Hopp, T. P. (1989) A calcium-dependent antibody for identification and purification of recombinant proteins, BioTechniques, 7, 580-589.

    CAS  PubMed  Google Scholar 

  74. Beerepoot, P., Lam, V. M., and Salahpour, A. (2013) Measurement of G protein-coupled receptor surface expression, J. Receptors Signal Transduct., 33, 162-165, https://doi.org/10.3109/10799893.2013.781625.

    Article  CAS  Google Scholar 

  75. Shao, Z., Shen, Q., Yao, B., Mao, C., Chen, L.-N., Zhang, H., Shen, D.-D., Zhang, C., Li, W., Du, X., et al. (2022) Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1, Nat. Chem. Biol., 18, 264-271, https://doi.org/10.1038/s41589-021-00918-z.

    Article  CAS  PubMed  Google Scholar 

  76. Bertin, B., Freissmuth, M., Breyer, R. M., Schutz, W., Strosberg, A. D., and Marullo, S. (1992) Functional expression of the human serotonin 5-HT1A receptor in Escherichia coli. Ligand binding properties and interaction with recombinant G protein α-subunits, J. Biol. Chem., 267, 8200-8206, https://doi.org/10.1016/S0021-9258(18)42427-1.

    Article  CAS  PubMed  Google Scholar 

  77. Grisshammer, R., Duckworth, R., and Henderson, R. (1993) Expression of a rat neurotensin receptor in Escherichia coli, Biochem. J., 295, 571-576, https://doi.org/10.1042/bj2950571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Park, S. H., Das, B. B., Casagrande, F., Tian, Y., Nothnagel, H. J., Chu, M., Kiefer, H., Maier, K., De Angelis, A. A., Marassi, F. M., et al. (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers, Nature, 491, 779-783, https://doi.org/10.1038/nature11580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schmidt, T. G. M., and Skerra, A. (1993) The random peptide library-assisted engineering of a c-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment, Protein Eng. Design Select., 6, 109-122, https://doi.org/10.1093/protein/6.1.109.

    Article  CAS  Google Scholar 

  80. Zhu, Y., Lin, X., Zong, X., Han, S., Wang, M., Su, Y., Ma, L., Chu, X., Yi, C., Zhao, Q., et al. (2022) Structural basis of FPR2 in recognition of Aβ42 and neuroprotection by humanin, Nat. Commun., 13, 1775, https://doi.org/10.1038/s41467-022-29361-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Klein, J. S., Jiang, S., Galimidi, R. P., Keeffe, J. R., Bjorkman, P. J., and Regan, L. (2014) Design and characterization of structured protein linkers with differing flexibilities, Protein Engin. Design Select., 27, 325-330, https://doi.org/10.1093/protein/gzu043.

    Article  CAS  Google Scholar 

  82. Lohse, M. J., Maiellaro, I., and Calebiro, D. (2014) Kinetics and mechanism of G protein-coupled receptor activation, Curr. Opinion Cell Biol., 27, 87-93, https://doi.org/10.1016/j.ceb.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  83. Xiang, J., Chun, E., Liu, C., Jing, L., Al-Sahouri, Z., Zhu, L., and Liu, W. (2016) Successful Strategies to Determine High-Resolution Structures of GPCRs, Trends Pharmacol. Sci., 37, 1055-1069, https://doi.org/10.1016/j.tips.2016.09.009.

    Article  CAS  PubMed  Google Scholar 

  84. Rosenbaum, D. M., Cherezov, V., Hanson, M. A., Rasmussen, S. G. F. F., Thian, F. S., Kobilka, T. S., Choi, H.-J. J., Yao, X.-J. J., Weis, W. I., Stevens, R. C., et al. (2007) GPCR engineering yields high-resolution structural insights into β 2-adrenergic receptor function, Science, 318, 1266-1273, https://doi.org/10.1126/science.1150609.

    Article  CAS  PubMed  Google Scholar 

  85. Rasmussen, S. G. F., Devree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., et al. (2011) Crystal structure of the β 2 adrenergic receptor-Gs protein complex, Nature, 477, 549-557, https://doi.org/10.1038/nature10361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, H., Qiao, A., Yang, D., Yang, L., Dai, A., De Graaf, C., Reedtz-Runge, S., Dharmarajan, V., Zhang, H., Han, G. W., et al. (2017) Structure of the full-length glucagon class B G-protein-coupled receptor, Nature, 546, 259-264, https://doi.org/10.1038/nature22363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yeliseev, A., Zoubak, L., and Gawrisch, K. (2007) Use of dual affinity tags for expression and purification of functional peripheral cannabinoid receptor, Protein Express. Purif., 53, 153-163, https://doi.org/10.1016/j.pep.2006.12.003.

    Article  CAS  Google Scholar 

  88. Johansson, L. C., Stauch, B., McCorvy, J. D., Han, G. W., Patel, N., Huang, X.-P., Batyuk, A., Gati, C., Slocum, S. T., Li, C., et al. (2019) XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity, Nature, 569, 289-292, https://doi.org/10.1038/s41586-019-1144-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yin, J., Mobarec, J. C., Kolb, P., and Rosenbaum, D. M. (2015) Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant, Nature, 519, 247-250, https://doi.org/10.1038/nature14035.

    Article  CAS  PubMed  Google Scholar 

  90. Ishihara, G., Goto, M., Saeki, M., Ito, K., Hori, T., Kigawa, T., Shirouzu, M., and Yokoyama, S. (2005) Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors, Protein Express. Purif., 41, 27-37, https://doi.org/10.1016/j.pep.2005.01.013.

    Article  CAS  Google Scholar 

  91. Krepkiy, D., Wong, K., Gawrisch, K., and Yeliseev, A. (2006) Bacterial expression of functional, biotinylated peripheral cannabinoid receptor CB2, Protein Express. Purif., 49, 60-70, https://doi.org/10.1016/j.pep.2006.03.002.

    Article  CAS  Google Scholar 

  92. Nehmé, R., Carpenter, B., Singhal, A., Strege, A., Edwards, P. C., White, C. F., Du, H., Grisshammer, R., and Tate, C. G. (2017) Mini-G proteins: Novel tools for studying GPCRs in their active conformation, PLoS One, 12, e0175642, https://doi.org/10.1371/journal.pone.0175642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. García-Nafría, J., Lee, Y., Bai, X., Carpenter, B., and Tate, C. G. (2018) Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein, eLife, 7, e35946, https://doi.org/10.7554/eLife.35946.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mittl, P. R., Ernst, P., and Plückthun, A. (2020) Chaperone-assisted structure elucidation with DARPins, Curr. Opin. Struct. Biol., 60, 93-100, https://doi.org/10.1016/j.sbi.2019.12.009.

    Article  CAS  PubMed  Google Scholar 

  95. Deluigi, M., Klipp, A., Klenk, C., Merklinger, L., Eberle, S. A., Morstein, L., Heine, P., Mitt, P. R. E., Ernst, P., Kamenecka, T. M., et al. (2021) Complexes of the neurotensin receptor 1 with small-molecule ligands reveal structural determinants of full, partial, and inverse agonism, Sci. Adv., 7, 5504-5531, https://doi.org/10.1126/sciadv.abe5504.

    Article  CAS  Google Scholar 

  96. Deluigi, M., Morstein, L., Schuster, M., Klenk, C., Merklinger, L., Cridge, R. R., de Zhang, L. A., Klipp, A., Vacca, S., Vaid, T. M., et al. (2022) Crystal structure of the α1B-adrenergic receptor reveals molecular determinants of selective ligand recognition, Nat. Commun., 13, 382, https://doi.org/10.1038/s41467-021-27911-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, J., Mahajan, A., and Tsai, M. D. (2006) Ankyrin repeat: A unique motif mediating protein-protein interactions, Biochemistry, 45, 15168-15178, https://doi.org/10.1021/bi062188q.

    Article  CAS  PubMed  Google Scholar 

  98. Wu, Y., Batyuk, A., Honegger, A., Brandl, F., Mittl, P. R. E., and Plückthun, A. (2017) Rigidly connected multispecific artificial binders with adjustable geometries, Sci. Rep., 7, 11217, https://doi.org/10.1038/s41598-017-11472-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Okada, T., Takeda, K., and Kouyama, T. (1998) Highly selective separation of rhodopsin from bovine rod outer segment membranes using combination of divalent cation and alkyl(thio)glucoside, Photochem. Photobiol., 67, 495-499, https://doi.org/10.1111/j.1751-1097.1998.tb09445.x.

    Article  CAS  PubMed  Google Scholar 

  100. Okada, T., Le Trong, I., Fox, B. A., Behnke, C. A., Stenkamp, R. E., and Palczewski, K. (2000) X-ray diffraction analysis of three-dimensional crystals of Bovine Rhodopsin obtained from mixed micelles, J. Struct. Biol., 130, 73-80, https://doi.org/10.1006/jsbi.1999.4209.

    Article  CAS  PubMed  Google Scholar 

  101. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Trong, I. Le, Teller, D. C., Okada, T., Stenkamp, R. E., et al. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor, Science, 289, 739-745, https://doi.org/10.1126/science.289.5480.739.

    Article  CAS  PubMed  Google Scholar 

  102. Murakami, M., and Kouyama, T. (2008) Crystal structure of squid rhodopsin, Nature, 453, 363-367, https://doi.org/10.1038/nature06925.

    Article  CAS  PubMed  Google Scholar 

  103. Sahdev, S., Khattar, S. K., and Saini, K. S. (2008) Production of active eukaryotic proteins through bacterial expression systems: A review of the existing biotechnology strategies, Mol. Cell. Biochem., 307, 249-264, https://doi.org/10.1007/s11010-007-9603-6.

    Article  CAS  PubMed  Google Scholar 

  104. Qu, X., Wang, D., and Wu, B. (2020) GPCRs. Chapter 1 – Progress in GPCR Structure Determination, Elsevier, pp. 3-22, https://doi.org/10.1016/B978-0-12-816228-6.00001-5.

  105. Ledesma, L., Sandoval, E., Cruz-Martínez, U., Escalante, A. M., Mejía, S., Moreno-Álvarez, P., Ávila, E., García, E., Coello, G., and Torres-Quiroz, F. (2018) YAAM: Yeast Amino Acid Modifications Database, Database, 2018, bax099, https://doi.org/10.1093/database/bax099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Byrne, B. (2015) Pichia pastoris as an expression host for membrane protein structural biology, Curr. Opin. Struct. Biol., 32, 9-17, https://doi.org/10.1016/j.sbi.2015.01.005.

    Article  CAS  PubMed  Google Scholar 

  107. He, Y., Wang, K., and Yan, N. (2014) The recombinant expression systems for structure determination of eukaryotic membrane proteins, Protein Cell, 5, 658-672, https://doi.org/10.1007/s13238-014-0086-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shimamura, T., Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Katritch, V., Abagyan, R., Cherezov, V., Liu, W., Han, G. W., et al. (2011) Structure of the human histamine H 1 receptor complex with doxepin, Nature, 475, 65-72, https://doi.org/10.1038/nature10236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hino, T., Arakawa, T., Iwanari, H., Yurugi-Kobayashi, T., Ikeda-Suno, C., Nakada-Nakura, Y., Kusano-Arai, O., Weyand, S., Shimamura, T., Nomura, N., et al. (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody, Nature, 482, 237-240, https://doi.org/10.1038/nature10750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eddy, M. T., Lee, M. Y., Gao, Z. G., White, K. L., Didenko, T., Horst, R., Audet, M., Stanczak, P., McClary, K. M., Han, G. W., et al. (2018) Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor, Cell, 172, 68-80.e12, https://doi.org/10.1016/j.cell.2017.12.004.

    Article  CAS  PubMed  Google Scholar 

  111. Hori, T., Okuno, T., Hirata, K., Yamashita, K., Kawano, Y., Yamamoto, M., Hato, M., Nakamura, M., Shimizu, T., Yokomizo, T., et al. (2018) Na+-mimicking ligands stabilize the inactive state of leukotriene B 4 receptor BLT1, Nat. Chem. Biol., 14, 262-269, https://doi.org/10.1038/nchembio.2547.

    Article  CAS  PubMed  Google Scholar 

  112. Harrison, R. L., and Jarvis, D. L. (2006) Protein N-glycosylation in the Baculovirus-insect cell expression system and engineering of insect cells to produce “mammalianized” recombinant glycoproteins, Adv. Virus Res., 68, 159-191, https://doi.org/10.1016/S0065-3527(06)68005-6.

    Article  CAS  PubMed  Google Scholar 

  113. Thomas, J., and Tate, C. G. (2014) Quality control in eukaryotic membrane protein overproduction, J. Mol. Biol., 426, 4139-4154, https://doi.org/10.1016/j.jmb.2014.10.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ghaderi, D., Zhang, M., Hurtado-Ziola, N., and Varki, A. (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation, Biotechnol. Genet. Engin. Rev., 28, 147-176, https://doi.org/10.5661/bger-28-147.

    Article  CAS  Google Scholar 

  115. Milić, D., and Veprintsev, D. B. (2015) Large-scale production and protein engineering of G protein-coupled receptors for structural studies, Front. Pharmacol., 6, 66, https://doi.org/10.3389/fphar.2015.00066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Warne, T., Chirnside, J., and Schertler, G. F. X. (2003) Expression and purification of truncated, non-glycosylated turkey beta-adrenergic receptors for crystallization, Biochim. Biophys. Acta Biomembr., 1610, 133-140, https://doi.org/10.1016/S0005-2736(02)00716-2.

    Article  CAS  Google Scholar 

  117. Chien, E. Y. T., Liu, W., Zhao, Q., Katritch, V., Han, G. W., Hanson, M. A., Shi, L., Newman, A. H., Javitch, J. A., Cherezov, V., et al. (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist, Science, 330, 1091-1095, https://doi.org/10.1126/science.1197410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Luckow, V. A., Lee, S. C., Barry, G. F., and Olins, P. O. (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli, J. Virol., 67, 4566-4579, https://doi.org/10.1128/jvi.67.8.4566-4579.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Contreras-Gómez, A., Sánchez-Mirón, A., García-Camacho, F., Molina-Grima, E., and Chisti, Y. (2014) Protein production using the baculovirus-insect cell expression system, Biotechnol. Progress, 30, 1-18, https://doi.org/10.1002/btpr.1842.

    Article  CAS  Google Scholar 

  120. Chaudhary, S., Pak, J. E., Gruswitz, F., Sharma, V., and Stroud, R. M. (2012) Overexpressing human membrane proteins in stably transfected and clonal human embryonic kidney 293S cells, Nat. Protocols, 7, 453-466, https://doi.org/10.1038/nprot.2011.453.

    Article  CAS  PubMed  Google Scholar 

  121. Fricker, S. P., Anastassov, V., Cox, J., Darkes, M. C., Grujic, O., Idzan, S. R., Labrecque, J., Lau, G., Mosi, R. M., Nelson, K. L., et al. (2006) Characterization of the molecular pharmacology of AMD3100: A specific antagonist of the G-protein coupled chemokine receptor, CXCR4, Biochem. Pharmacol., 72, 588-596, https://doi.org/10.1016/j.bcp.2006.05.010.

    Article  CAS  PubMed  Google Scholar 

  122. Cheng, Z., Garvin, D., Paguio, A., Stecha, P., Wood, K., and Fan, F. (2012) Luciferase reporter assay system for deciphering GPCR pathways, Curr. Chem. Genomics, 4, 84-91, https://doi.org/10.2174/1875397301004010084.

    Article  CAS  Google Scholar 

  123. Tate, C. G. (2001) Overexpression of mammalian integral membrane proteins for structural studies, FEBS Lett., 504, 94-98, https://doi.org/10.1016/S0014-5793(01)02711-9.

    Article  CAS  PubMed  Google Scholar 

  124. Andréll, J., and Tate, C. G. (2013) Overexpression of membrane proteins in mammalian cells for structural studies, Mol. Membr. Biol., 30, 52-63, https://doi.org/10.3109/09687688.2012.703703.

    Article  PubMed  Google Scholar 

  125. Mikami, S., Kobayashi, T., Masutani, M., Yokoyama, S., and Imataka, H. (2008) A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins, Protein Express. Purif., 62, 190-198, https://doi.org/10.1016/j.pep.2008.09.002.

    Article  CAS  Google Scholar 

  126. Goren, M. A., Nozawa, A., Makino, S., Wrobel, R. L., and Fox, B. G. (2009) Chapter 37 cell-free translation of integral membrane proteins into unilamelar liposomes, Methods Enzymol., 463, 647-673, https://doi.org/10.1016/S0076-6879(09)63037-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kögler, L. M., Stichel, J., and Beck-Sickinger, A. G. (2019) Structural investigations of cell-free expressed G protein-coupled receptors, Biol. Chem., 401, 97-116, https://doi.org/10.1515/hsz-2019-0292.

    Article  CAS  PubMed  Google Scholar 

  128. Schwarz, D., Junge, F., Durst, F., Frölich, N., Schneider, B., Reckel, S., Sobhanifar, S., Dötsch, V., and Bernhard, F. (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems, Nat. Protoc., 2, 2945-2957, https://doi.org/10.1038/nprot.2007.426.

    Article  CAS  PubMed  Google Scholar 

  129. Proverbio, D., Henrich, E., Orbán, E., Dötsch, V., and Bernhard, F. (2014) Membrane Protein Quality Control in Cell-Free Expression Systems: Tools, Strategies and Case Studies, in Membrane Proteins Production for Structural Analysis, pp. 45-70, https://doi.org/10.1007/978-1-4939-0662-8_2.

  130. Zemella, A., Thoring, L., Hoffmeister, C., and Kubick, S. (2015) Cell-free protein synthesis: pros and cons of prokaryotic and eukaryotic systems, ChemBioChem, 16, 2420-2431, https://doi.org/10.1002/cbic.201500340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Klammt, C., Schwarz, D., Löhr, F., Schneider, B., Dötsch, V., and Bernhard, F. (2006) Cell-free expression as an emerging technique for the large scale production of integral membrane protein, FEBS J., 273, 4141-4153, https://doi.org/10.1111/j.1742-4658.2006.05432.x.

    Article  CAS  PubMed  Google Scholar 

  132. Quast, R. B., Mrusek, D., Hoffmeister, C., Sonnabend, A., and Kubick, S. (2015) Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis, FEBS Lett., 589, 1703-1712, https://doi.org/10.1016/j.febslet.2015.04.041.

    Article  CAS  PubMed  Google Scholar 

  133. Klammt, C., Schwarz, D., Eifler, N., Engel, A., Piehler, J., Haase, W., Hahn, S., Dötsch, V., and Bernhard, F. (2007) Cell-free production of G protein-coupled receptors for functional and structural studies, J. Struct. Biol., 158, 482-493, https://doi.org/10.1016/j.jsb.2007.01.006.

    Article  CAS  PubMed  Google Scholar 

  134. Henrich, E., Dötsch, V., and Bernhard, F. (2015) Screening for lipid requirements of membrane proteins by combining cell-free expression with nanodiscs, Methods Enzymol., 556, 351-369, https://doi.org/10.1016/bs.mie.2014.12.016.

    Article  CAS  PubMed  Google Scholar 

  135. Boland, C., Li, D., Shah, S. T. A., Haberstock, S., Dötsch, V., Bernhard, F., and Caffrey, M. (2014) Cell-free expression and in meso crystallisation of an integral membrane kinase for structure determination, Cell. Mol. Life Sci., 71, 4895-4910, https://doi.org/10.1007/s00018-014-1655-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Umbach, S., Dötsch, V., and Bernhard, F. (2022) Cell-free expression of GPCRs into nanomembranes for functional and structural studies, Methods Mol. Biol., 2507, 405-424, https://doi.org/10.1007/978-1-0716-2368-8_22.

    Article  CAS  PubMed  Google Scholar 

  137. Carlson, E. D., Gan, R., Hodgman, C. E., and Jewett, M. C. (2012) Cell-free protein synthesis: applications come of age, Biotechnol. Adv., 30, 1185-1194, https://doi.org/10.1016/j.biotechadv.2011.09.016.

    Article  CAS  PubMed  Google Scholar 

  138. Tarui, H., Imanishi, S., and Hara, T. (2000) A novel cell-free translation/glycosylation system prepared from insect cells, J. Biosci. Bioengin., 90, 508-514, https://doi.org/10.1016/S1389-1723(01)80031-1.

    Article  CAS  Google Scholar 

  139. Suzuki, T., Ito, M., Ezure, T., Shikata, M., Ando, E., Utsumi, T., Tsunasawa, S., and Nishimura, O. (2006) N-terminal protein modifications in an insect cell-free protein synthesis system and their identification by mass spectrometry, Proteomics, 6, 4486-4495, https://doi.org/10.1002/pmic.200600126.

    Article  CAS  PubMed  Google Scholar 

  140. Hancock, J. F. (1995) Reticulocyte lysate assay for in vitro translation and posttranslational modification of Ras proteins, Methods Enzymol., 255, 60-65, https://doi.org/10.1016/S0076-6879(95)55009-7.

    Article  CAS  PubMed  Google Scholar 

  141. Brödel, A. K., Sonnabend, A., and Kubick, S. (2014) Cell-free protein expression based on extracts from CHO cells, Biotechnol. Bioengin., 111, 25-36, https://doi.org/10.1002/bit.25013.

    Article  CAS  Google Scholar 

  142. Foshag, D., Henrich, E., Hiller, E., Schäfer, M., Kerger, C., Burger-Kentischer, A., Diaz-Moreno, I., García-Mauriño, S. M., Dötsch, V., Rupp, S., et al. (2018) The E. coli S30 lysate proteome: a prototype for cell-free protein production, New Biotechnol., 40, 245-260, https://doi.org/10.1016/j.nbt.2017.09.005.

    Article  CAS  Google Scholar 

  143. Yin, G., and Swartz, J. R. (2004) Enhancing multiple disulfide bonded protein folding in a cell-free system, Biotechnol. Bioengin., 86, 188-195, https://doi.org/10.1002/bit.10827.

    Article  CAS  Google Scholar 

  144. Kim, D. M., and Swartz, J. R. (2004) Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli, Biotechnol.Bioengin., 85, 122-129, https://doi.org/10.1002/bit.10865.

    Article  CAS  Google Scholar 

  145. Goerke, A. R., and Swartz, J. R. (2008) Development of cell-free protein synthesis platforms for disulfide bonded proteins, Biotechnol. Bioengin., 99, 351-367, https://doi.org/10.1002/bit.21567.

    Article  CAS  Google Scholar 

  146. Jaroentomeechai, T., Stark, J. C., Natarajan, A., Glasscock, C. J., Yates, L. E., Hsu, K. J., Mrksich, M., Jewett, M. C., and Delisa, M. P. (2018) Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery, Nat. Commun., 9, 2686, https://doi.org/10.1038/s41467-018-05110-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schoborg, J. A., Hershewe, J. M., Stark, J. C., Kightlinger, W., Kath, J. E., Jaroentomeechai, T., Natarajan, A., DeLisa, M. P., and Jewett, M. C. (2018) A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases, Biotechnol. Bioengin., 115, 739-750, https://doi.org/10.1002/bit.26502.

    Article  CAS  Google Scholar 

  148. Kightlinger, W., Lin, L., Rosztoczy, M., Li, W., Delisa, M. P., Mrksich, M., and Jewett, M. C. (2018) Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases article, Nat. Chem. Biol., 14, 627-635, https://doi.org/10.1038/s41589-018-0051-2.

    Article  CAS  PubMed  Google Scholar 

  149. Suzuki, Y., Ogasawara, T., Tanaka, Y., Takeda, H., Sawasaki, T., Mogi, M., Liu, S., and Maeyama, K. (2018) Functional G-protein-coupled receptor (GPCR) synthesis: The pharmacological analysis of human histamine H1 receptor (HRH1) synthesized by a wheat germ cell-free protein synthesis system combined with asolectin glycerosomes, Front. Pharmacol., 9, 38, https://doi.org/10.3389/fphar.2018.00038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yang, J. P., Cirico, T., Katzen, F., Peterson, T. C., and Kudlicki, W. (2011) Cell-free synthesis of a functional G protein-coupled receptor complexed with nanometer scale bilayer discs, BMC Biotechnol., 11, 57, https://doi.org/10.1186/1472-6750-11-57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sonnabend, A., Spahn, V., Stech, M., Zemella, A., Stein, C., and Kubick, S. (2017) Production of G protein-coupled receptors in an insect-based cell-free system, Biotechnol. Bioengin., 114, 2328-2338, https://doi.org/10.1002/bit.26346.

    Article  CAS  Google Scholar 

  152. Junge, F., Luh, L. M., Proverbio, D., Schäfer, B., Abele, R., Beyermann, M., Dötsch, V., and Bernhard, F. (2010) Modulation of G-protein coupled receptor sample quality by modified cell-free expression protocols: A case study of the human endothelin A receptor, J. Struct. Biol., 172, 94-106, https://doi.org/10.1016/j.jsb.2010.05.004.

    Article  CAS  PubMed  Google Scholar 

  153. Zemella, A., Grossmann, S., Sachse, R., Sonnabend, A., Schaefer, M., and Kubick, S. (2017) Qualifying a eukaryotic cell-free system for fluorescence based GPCR analyses, Sci. Rep., 7, 3740, https://doi.org/10.1038/s41598-017-03955-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rues, R. B., Dong, F., Dötsch, V., and Bernhard, F. (2018) Systematic optimization of cell-free synthesized human endothelin B receptor folding, Methods, 147, 73-83, https://doi.org/10.1016/j.ymeth.2018.01.012.

    Article  CAS  PubMed  Google Scholar 

  155. Takeda, H., Ogasawara, T., Ozawa, T., Muraguchi, A., Jih, P. J., Morishita, R., Uchigashima, M., Watanabe, M., Fujimoto, T., Iwasaki, T., et al. (2015) Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay, Sci. Rep., 5, 11333, https://doi.org/10.1038/srep11333.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wada, T., Shimono, K., Kikukawa, T., Hato, M., Shinya, N., Kim, S. Y., Kimura-Someya, T., Shirouzu, M., Tamogami, J., Miyauchi, S., et al. (2011) Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga, J. Mol. Biol., 411, 986-998, https://doi.org/10.1016/j.jmb.2011.06.028.

    Article  CAS  PubMed  Google Scholar 

  157. Chen, Y. J., Pornillos, O., Lieu, S., Ma, C., Chen, A. P., and Chang, G. (2007) X-ray structure of EmrE supports dual topology model, Proc. Natl. Acad. Sci. USA, 104, 18999-19004, https://doi.org/10.1073/pnas.0709387104.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bornhorst, J. A., and Falke, J. J. (2000) Purification of proteins using polyhistidine affinity tags, Methods Enzymol., 326, 245-254, https://doi.org/10.1016/S0076-6879(00)26058-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Qu, X., Qiu, N., Wang, M., Zhang, B., Du, J., Zhong, Z., Xu, W., Chu, X., Ma, L., Yi, C., et al. (2022) Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1, Nature, 604, 779-785, https://doi.org/10.1038/s41586-022-04580-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bous, J., Orcel, H., Floquet, N., Leyrat, C., Lai-Kee-Him, J., Gaibelet, G., Ancelin, A., Saint-Paul, J., Trapani, S., Louet, M., et al. (2021) Cryo-electron microscopy structure of the antidiuretic hormone arginine-vasopressin V2 receptor signaling complex, Sci. Adv., 7, eabg5628, https://doi.org/10.1126/sciadv.abg5628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cong, Z., Chen, L. N., Ma, H., Zhou, Q., Zou, X., Ye, C., Dai, A., Liu, Q., Huang, W., Sun, X., et al. (2021) Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor, Nat. Commun., 12, 3763, https://doi.org/10.1038/s41467-021-24058-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ma, S., Shen, Q., Zhao, L. H., Mao, C., Zhou, X. E., Shen, D. D., de Waal, P. W., Bi, P., Li, C., Jiang, Y., et al. (2020) Molecular basis for hormone recognition and activation of corticotropin-releasing factor receptors, Mol. Cell, 77, 669-680.e4, https://doi.org/10.1016/j.molcel.2020.01.013.

    Article  CAS  PubMed  Google Scholar 

  163. Wang, H., Hetzer, F., Huang, W., Qu, Q., Meyerowitz, J., Kaindl, J., Hübner, H., Skiniotis, G., Kobilka, B. K., and Gmeiner, P. (2022) Structure-based evolution of G protein-biased µ-opioid receptor agonists, Angewandte Chemie, 61, e202200269, https://doi.org/10.1002/anie.202200269.

    Article  CAS  PubMed  Google Scholar 

  164. Cao, J., Belousoff, M. J., Liang, Y.-L., Johnson, R. M., Josephs, T. M., Fletcher, M. M., Christopoulos, A., Hay, D. L., Danev, R., Wootten, D., et al. (2022) A structural basis for amylin receptor phenotype, Science, 375, eabm9609, https://doi.org/10.1126/science.abm9609.

    Article  CAS  PubMed  Google Scholar 

  165. Bokoch, M. P., Zou, Y., Rasmussen, S. G. F., Liu, C. W., Nygaard, R., Rosenbaum, D. M., Fung, J. J., Choi, H. J., Thian, F. S., Kobilka, T. S., et al. (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor, Nature, 463, 108-112, https://doi.org/10.1038/nature08650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rosenbaum, D. M., Zhang, C., Lyons, J. A., Holl, R., Aragao, D., Arlow, D. H., Rasmussen, S. G. F., Choi, H. J., Devree, B. T., Sunahara, R. K., et al. (2011) Structure and function of an irreversible agonist-β2 adrenoceptor complex, Nature, 469, 236-242, https://doi.org/10.1038/nature09665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Brizzard, B. L., Chubet, R. G., and Vizard, D. L. (1994) Immunoaffinity purification of FLAG® epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution, BioTechniques, 16, 730-735.

    CAS  PubMed  Google Scholar 

  168. Slootstra, J. W. (1997) Identification of new tag sequences with differential and selective recognition properties for the anti-FLAG monoclonal antibodies Ml, M2 and M5, Mol. Divers., 2, 156-164, https://doi.org/10.1007/BF01682203.

    Article  CAS  PubMed  Google Scholar 

  169. Park, S. H., Cheong, C., Idoyaga, J., Kim, J. Y., Choi, J. H., Do, Y., Lee, H., Jo, J. H., Oh, Y. S., Im, W., et al. (2008) Generation and application of new rat monoclonal antibodies against synthetic FLAG and OLLAS tags for improved immunodetection, J. Immunol. Methods, 331, 27-38, https://doi.org/10.1016/j.jim.2007.10.012.

    Article  CAS  PubMed  Google Scholar 

  170. Gerace, E., and Moazed, D. (2015) Affinity Pull-Down of Proteins Using Anti-FLAG M2 Agarose Beads, Methods Enzymol., 559, 99-110, https://doi.org/10.1016/bs.mie.2014.11.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tsai, C. J., Pamula, F., Nehmé, R., Mühle, J., Weinert, T., Flock, T., Nogly, P., Edwards, P. C., Carpenter, B., Gruhl, T., et al. (2018) Crystal structure of rhodopsin in complex with a mini-Go sheds light on the principles of G protein selectivity, Sci. Adv., 4, 7052, https://doi.org/10.1126/sciadv.aat7052.

    Article  CAS  Google Scholar 

  172. Zhao, D. Y., Pöge, M., Morizumi, T., Gulati, S., Van Eps, N., Zhang, J., Miszta, P., Filipek, S., Mahamid, J., Plitzko, J. M., et al. (2019) Cryo-EM structure of the native rhodopsin dimer in nanodiscs, J. Biol. Chem., 294, 14215-14230, https://doi.org/10.1074/jbc.RA119.010089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wong, J. P., Reboul, E., Molday, R. S., and Kast, J. (2009) A carboxy-terminal affinity tag for the purification and mass spectrometric characterization of integral membrane proteins, J. Proteome Res., 8, 2388-2396, https://doi.org/10.1021/pr801008c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Langlois, M., Brémont, B., Rousselle, D., and Gaudy, F. (1993) Structural analysis by the comparative molecular field analysis method of the affinity of β-adrenoreceptor blocking agents for 5-HT1A and 5-HT1B receptors, Eur. J. Pharmacol. Mol. Pharmacol., 244, 77-87, https://doi.org/10.1016/0922-4106(93)90061-D.

    Article  CAS  Google Scholar 

  175. Sun, R., Mak, S., Haschemi, J., Horn, P., Boege, F., and Luppa, P. B. (2019) Nanodiscs incorporating native β1 adrenergic receptor as a novel approach for the detection of pathological autoantibodies in patients with dilated cardiomyopathy, J. Appl. Lab. Med., 4, 391-403, https://doi.org/10.1373/jalm.2018.028225.

    Article  CAS  PubMed  Google Scholar 

  176. Parker, E. M., Kameyama, K., Higashijima, T., and Ross, E. M. (1991) Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells, J. Biol. Chem., 266, 519-527, https://doi.org/10.1016/S0021-9258(18)52467-4.

    Article  CAS  PubMed  Google Scholar 

  177. Stadel, J. M. (1985) Photoaffinity labeling of β-adrenergic receptors, Pharmacol. Ther., 31, 57-77, https://doi.org/10.1016/0163-7258(85)90037-3.

    Article  CAS  PubMed  Google Scholar 

  178. Caron, M. G., Srinivasan, Y., Pitha, J., Kociolek, K., and Lefkowitz, R. J. (1979) Affinity chromatography of the β adrenergic receptor, J. Biol. Chem., 254, 2923-2927, https://doi.org/10.1016/S0021-9258(17)30162-X.

    Article  CAS  PubMed  Google Scholar 

  179. Ring, A. M., Manglik, A., Kruse, A. C., Enos, M. D., Weis, W. I., Garcia, K. C., and Kobilka, B. K. (2013) Adrenaline-activated structure of β 2-adrenoceptor stabilized by an engineered nanobody, Nature, 502, 575-579, https://doi.org/10.1038/nature12572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Masureel, M., Zou, Y., Picard, L. P., van der Westhuizen, E., Mahoney, J. P., Rodrigues, J. P. G. L. M., Mildorf, T. J., Dror, R. O., Shaw, D. E., Bouvier, M., et al. (2018) Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist, Nat. Chem. Biol., 14, 1059-1066, https://doi.org/10.1038/s41589-018-0145-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Haga, K., Kruse, A. C., Asada, H., Yurugi-Kobayashi, T., Shiroishi, M., Zhang, C., Weis, W. I., Okada, T., Kobilka, B. K., Haga, T., et al. (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist, Nature, 482, 547-551, https://doi.org/10.1038/nature10753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Edwards, P. C., Li, J., Burghammer, M., Hugh McDowell, J., Villa, C., Hargrave, P. A., and Schertler, G. F. X. (2004) Crystals of native and modified bovine rhodopsins and their heavy atom derivatives, J. Mol. Biol., 343, 1439-1450, https://doi.org/10.1016/j.jmb.2004.08.089.

    Article  CAS  PubMed  Google Scholar 

  183. Rasmussen, S. G. F., Choi, H. J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., Burghammer, M., Ratnala, V. R. P., Sanishvili, R., Fischetti, R. F., et al. (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor, Nature, 450, 383-387, https://doi.org/10.1038/nature06325.

    Article  CAS  PubMed  Google Scholar 

  184. Chen, Q., Plasencia, M., Li, Z., Mukherjee, S., Patra, D., Chen, C. L., Klose, T., Yao, X. Q., Kossiakoff, A. A., Chang, L., et al. (2021) Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1, Nature, 595, 600-605, https://doi.org/10.1038/s41586-021-03721-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Whitaker, J. R. (1963) Determination of molecular weights of proteins by gel filtration of sephadex, Anal. Chem., 35, 1950-1953, https://doi.org/10.1021/ac60205a048.

    Article  CAS  Google Scholar 

  186. Andrews, P. (1964) Estimation of the molecular weights of proteins by Sephadex gel-filtration, Biochem. J., 91, 222-233, https://doi.org/10.1042/bj0910222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhou, F., Zhang, H., Cong, Z., Zhao, L.-H., Zhou, Q., Mao, C., Cheng, X., Shen, D.-D., Cai, X., Ma, C., et al. (2020) Structural basis for activation of the growth hormone-releasing hormone receptor, Nat. Commun., 11, 5205, https://doi.org/10.1038/s41467-020-18945-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yuan, Y., Jia, G., Wu, C., Wang, W., Cheng, L., Li, Q., Li, Z., Luo, K., Yang, S., Yan, W., et al. (2021) Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition, Cell Res., 31, 1263-1274, https://doi.org/10.1038/s41422-021-00566-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Isaikina, P., Tsai, C.-J., Dietz, N., Pamula, F., Grahl, A., Goldie, K. N., Guixà-González, R., Branco, C., Paolini-Bertrand, M., Calo, N., et al. (2021) Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist, Sci. Adv., 7, eabg8685, https://doi.org/10.1126/sciadv.abg8685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Jones, A. J. Y., Gabriel, F., Tandale, A., and Nietlispach, D. (2020) Structure and dynamics of GPCRs in lipid membranes: physical principles and experimental approaches, Molecules, 25, 4729, https://doi.org/10.3390/molecules25204729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Popot, J. L. (2010) Amphipols, nanodiscs, and fluorinated surfactants: Three nonconventional approaches to studying membrane proteins in aqueous solutions, Annu. Rev. Biochem., 79, 737-775, https://doi.org/10.1146/annurev.biochem.052208.114057.

    Article  CAS  PubMed  Google Scholar 

  192. Zhou, H. X., and Cross, T. A. (2013) Influences of membrane mimetic environments on membrane protein structures, Annu. Rev. Biophys., 42, 361-392, https://doi.org/10.1146/annurev-biophys-083012-130326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Vanaken, T., Foxall-Vanaken, S., Castleman, S., and Ferguson-Miller, S. (1986) Alkyl glycoside detergents: synthesis and applications to the study of membrane proteins, Methods Enzymol., 125, 27-35, https://doi.org/10.1016/S0076-6879(86)25005-3.

    Article  CAS  PubMed  Google Scholar 

  194. Tulumello, D. V., and Deber, C. M. (2009) SDS micelles as a membrane-mimetic environment for transmembrane segments, Biochemistry, 48, 12096-12103, https://doi.org/10.1021/bi9013819.

    Article  CAS  PubMed  Google Scholar 

  195. Bhuyan, A. K. (2010) On the mechanism of SDS-induced protein denaturation, Biopolymers, 93, 186-199, https://doi.org/10.1002/bip.21318.

    Article  CAS  PubMed  Google Scholar 

  196. Heim, B., Handrick, R., Hartmann, M. D., and Kiefer, H. (2021) Refolding and characterization of two G protein-coupled receptors purified from E. coli inclusion bodies, PLoS One, 16, e0247689, https://doi.org/10.1371/journal.pone.0247689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lee, S., Ghosh, S., Jana, S., Robertson, N., Tate, C. G., and Vaidehi, N. (2020) How do branched detergents stabilize GPCRs in micelles? Biochemistry, 59, 2125-2134, https://doi.org/10.1021/acs.biochem.0c00183.

    Article  CAS  PubMed  Google Scholar 

  198. Makowska, J., Wyrzykowski, D., Pilarski, B., and Chmurzyński, L. (2015) Thermodynamics of sodium dodecyl sulphate (SDS) micellization in the presence of some biologically relevant pH buffers, J. Therm. Anal. Calorimetry, 121, 257-261, https://doi.org/10.1007/s10973-015-4644-7.

    Article  CAS  Google Scholar 

  199. Seddon, A. M., Curnow, P., and Booth, P. J. (2004) Membrane proteins, lipids and detergents: not just a soap opera, Biochim. Biophys. Acta Biomembr., 1666, 105-117, https://doi.org/10.1016/j.bbamem.2004.04.011.

    Article  CAS  Google Scholar 

  200. Singh, S. K., and Sigworth, F. J. (2015) Cryo-EM: spinning the micelles away, Structure, 23, 1561, https://doi.org/10.1016/j.str.2015.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Birch, J., Axford, D., Foadi, J., Meyer, A., Eckhardt, A., Thielmann, Y., and Moraes, I. (2018) The fine art of integral membrane protein crystallisation, Methods, 147, 150-162, https://doi.org/10.1016/j.ymeth.2018.05.014.

    Article  CAS  PubMed  Google Scholar 

  202. Kampjut, D., Steiner, J., and Sazanov, L. A. (2021) Cryo-EM grid optimization for membrane proteins, iScience, 24, 102139, https://doi.org/10.1016/j.isci.2021.102139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Maeda, S., Yamamoto, H., Kinch, L. N., Garza, C. M., Takahashi, S., Otomo, C., Grishin, N. V., Forli, S., Mizushima, N., and Otomo, T. (2020) Structure, lipid scrambling activity and role in autophagosome formation of ATG9A, Nat. Struct. Mol. Biol., 27, 1194-1201, https://doi.org/10.1038/s41594-020-00520-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ratkeviciute, G., Cooper, B. F., and Knowles, T. J. (2021) Methods for the solubilisation of membrane proteins: the micelle-aneous world of membrane protein solubilisation, Biochem. Soc. Trans., 49, 1763-1777, https://doi.org/10.1042/BST20210181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Nguyen, A. H., and Lefkowitz, R. J. (2021) Signaling at the endosome: cryo-EM structure of a GPCR-G protein-beta-arrestin megacomplex, FEBS J., 288, 2562-2569, https://doi.org/10.1111/febs.15773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tsai, C.-J., Marino, J., Adaixo, R., Pamula, F., Muehle, J., Maeda, S., Flock, T., Taylor, N. M., Mohammed, I., Matile, H., et al. (2019) Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit, eLife, 8, e46041, https://doi.org/10.7554/eLife.46041.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Tribet, C., Audebert, R., and Popot, J. L. (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions, Proc. Natl. Acad. Sci. USA, 93, 15047-15050, https://doi.org/10.1073/pnas.93.26.15047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Popot, J. L., Althoff, T., Bagnard, D., Banéres, J. L., Bazzacco, P., Billon-Denis, E., Catoire, L. J., Champeil, P., Charvolin, D., Cocco, M. J., et al. (2011) Amphipols from A to Z, Annu. Rev. Biophys., 40, 379-408, https://doi.org/10.1146/annurev-biophys-042910-155219.

    Article  CAS  PubMed  Google Scholar 

  209. Bosco, M., Damian, M., Chauhan, V., Roche, M., Guillet, P., Fehrentz, J. A., Bonneté, F., Polidori, A., Banères, J. L., and Durand, G. (2020) Biotinylated non-ionic amphipols for GPCR ligands screening, Methods, 180, 69-78, https://doi.org/10.1016/j.ymeth.2020.06.001.

    Article  CAS  PubMed  Google Scholar 

  210. Wheatley, M., Charlton, J., Jamshad, M., Routledge, S. J., Bailey, S., La-Borde, P. J., Azam, M. T., Logan, R. T., Bill, R. M., Dafforn, T. R., et al. (2016) GPCR-styrene maleic acid lipid particles (GPCR-SMALPs): Their nature and potential, Biochem. Soc. Transact., 44, 619-623, https://doi.org/10.1042/BST20150284.

    Article  CAS  Google Scholar 

  211. Tedesco, D., Maj, M., Malarczyk, P., Cingolani, A., Zaffagnini, M., Wnorowski, A., Czapiński, J., Benelli, T., Mazzoni, R., Bartolini, M., et al. (2021) Application of the SMALP technology to the isolation of GPCRs from low-yielding cell lines, Biochim. Biophys. Acta Biomembr., 1863, 183641, https://doi.org/10.1016/j.bbamem.2021.183641.

    Article  CAS  PubMed  Google Scholar 

  212. Routledge, S. J., Jamshad, M., Little, H. A., Lin, Y.-P., Simms, J., Thakker, A., Spickett, C. M., Bill, R. M., Dafforn, T. R., Poyner, D. R., et al. (2020) Ligand-induced conformational changes in a SMALP-encapsulated GPCR, Biochim. Biophys. Acta Biomembr., 1862, 183235, https://doi.org/10.1016/j.bbamem.2020.183235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Denisov, I. G., and Sligar, S. G. (2016) Nanodiscs for structural and functional studies of membrane proteins, Nat. Struct. Mol. Biol., 23, 481-486, https://doi.org/10.1038/nsmb.3195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Cai, Y., Liu, Y., Culhane, K. J., DeVree, B. T., Yang, Y., Sunahara, R. K., and Yan, E. C. Y. (2017) Purification of family B G protein-coupled receptors using nanodiscs: application to human glucagon-like peptide-1 receptor, PLoS One, 12, e0179568, https://doi.org/10.1371/journal.pone.0179568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Nasr, M. L., Baptista, D., Strauss, M., Sun, Z. Y. J., Grigoriu, S., Huser, S., Plückthun, A., Hagn, F., Walz, T., Hogle, J. M., et al. (2016) Covalently circularized nanodiscs for studying membrane proteins and viral entry, Nat. Methods, 14, 49-52, https://doi.org/10.1038/nmeth.4079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhao, Z., Zhang, M., Hogle, J. M., Shih, W. M., Wagner, G., and Nasr, M. L. (2018) DNA-Corralled nanodiscs for the structural and functional characterization of membrane proteins and viral entry, J. Am. Chem. Soc., 140, 10639-10643, https://doi.org/10.1021/jacs.8b04638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kishimoto, Y., Hiraiwa, M., and O’Brien, J. S. (1992) Saposins: Structure, function, distribution, and molecular genetics, J. Lipid Res., 33, 1255-1267, https://doi.org/10.1016/S0022-2275(20)40540-1.

    Article  CAS  PubMed  Google Scholar 

  218. Popovic, K., Holyoake, J., Pomès, R., and Privé, G. G. (2012) Structure of saposin A lipoprotein discs, Proc. Natl. Acad. Sci. USA, 109, 2908-2912, https://doi.org/10.1073/pnas.1115743109.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Flayhan, A., Mertens, H. D. T., Ural-Blimke, Y., Martinez Molledo, M., Svergun, D. I., and Löw, C. (2018) Saposin lipid nanoparticles: a highly versatile and modular tool for membrane protein research, Structure, 26, 345-355.e5, https://doi.org/10.1016/j.str.2018.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Dürr, U. H. N., Gildenberg, M., and Ramamoorthy, A. (2012) The magic of bicelles lights up membrane protein structure, Chem. Rev., 112, 6054-6074, https://doi.org/10.1021/cr300061w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Schmidt, P., Bender, B. J., Kaiser, A., Gulati, K., Scheidt, H. A., Hamm, H. E., Meiler, J., Beck-Sickinger, A. G., and Huster, D. (2018) Improved in vitro folding of the Y2 G protein-coupled receptor into bicelles, Front. Mol. Biosci., 4, 100, https://doi.org/10.3389/fmolb.2017.00100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Murugova, T. N., Ivankov, O. I., Ryzhykau, Y. L., Soloviov, D. V., Kovalev, K. V., Skachkova, D. V., Round, A., Baeken, C., Ishchenko, A. V., Volkov, O. A., et al. (2022) Mechanisms of membrane protein crystallization in “bicelles”, Sci. Rep., 12, 11109, https://doi.org/10.1038/s41598-022-13945-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ujwal, R., and Bowie, J. U. (2011) Crystallizing membrane proteins using lipidic bicelles, Methods, 55, 337-341, https://doi.org/10.1016/j.ymeth.2011.09.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Goddard, A. D., Dijkman, P. M., Adamson, R. J., Dos Reis, R. I., and Watts, A. (2015) Reconstitution of membrane proteins: a GPCR as an example, Methods Enzymol., 556, 405-424, https://doi.org/10.1016/bs.mie.2015.01.004.

    Article  CAS  PubMed  Google Scholar 

  225. Ong, S. G. M., Chitneni, M., Lee, K. S., Ming, L. C., and Yuen, K. H. (2016) Evaluation of extrusion technique for nanosizing liposomes, Pharmaceutics, 8, 36, https://doi.org/10.3390/pharmaceutics8040036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., and Nejati-Koshki, K. (2013) Liposome: classification, preparation, and applications, Nanoscale Res. Lett., 8, 102, https://doi.org/10.1186/1556-276X-8-102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Nakhaei, P., Margiana, R., Bokov, D. O., Abdelbasset, W. K., Jadidi Kouhbanani, M. A., Varma, R. S., Marofi, F., Jarahian, M., and Beheshtkhoo, N. (2021) Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol, Front. Bioengin. Biotechnol., 9, 748, https://doi.org/10.3389/fbioe.2021.705886.

    Article  Google Scholar 

  228. Cherezov, V. (2011) Lipidic cubic phase technologies for membrane protein structural studies, Curr. Opin. Struct. Biol., 21, 559-566, https://doi.org/10.1016/j.sbi.2011.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Caffrey, M. (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes, Acta Crystallogr. Sect. F Struct. Biol. Commun., 71, 3-18, https://doi.org/10.1107/S2053230X14026843.

    Article  CAS  Google Scholar 

  230. Cherezov, V., Clogston, J., Misquitta, Y., Abdel-Gawad, W., and Caffrey, M. (2002) Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase, Biophys. J., 83, 3393-3407, https://doi.org/10.1016/S0006-3495(02)75339-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Cherezov, V., Abola, E., and Stevens, R. C. (2010) Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets, Methods Mol. Biol., 654, 141-168, https://doi.org/10.1007/978-1-60761-762-4_8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Ishchenko, A., Gati, C., and Cherezov, V. (2018) Structural biology of G protein-coupled receptors: new opportunities from XFELs and cryoEM, Curr. Opin. Struct. Biol., 51, 44-52, https://doi.org/10.1016/j.sbi.2018.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Martynowycz, M. W., Shiriaeva, A., Ge, X., Hattne, J., Nannenga, B. L., Cherezov, V., and Gonen, T. (2021) MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP, Proc. Natl. Acad. Sci. USA, 118, e2106041118, https://doi.org/10.1073/pnas.2106041118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Alexandrov, A. I., Mileni, M., Chien, E. Y. T., Hanson, M. A., and Stevens, R. C. (2008) Microscale fluorescent thermal stability assay for membrane proteins, Structure, 16, 351-359, https://doi.org/10.1016/j.str.2008.02.004.

    Article  CAS  PubMed  Google Scholar 

  235. Kooistra, A. J., Mordalski, S., Pándy-Szekeres, G., Esguerra, M., Mamyrbekov, A., Munk, C., Keserű, G. M., and Gloriam, D. E. (2021) GPCRdb in 2021: Integrating GPCR sequence, structure and function, Nucleic Acids Res., 49, D335-D343, https://doi.org/10.1093/nar/gkaa1080.

    Article  CAS  PubMed  Google Scholar 

  236. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W., and Ernst, O. P. (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin, Nature, 454, 183-187, https://doi.org/10.1038/nature07063.

    Article  CAS  PubMed  Google Scholar 

  237. Taniguchi, R., Inoue, A., Sayama, M., Uwamizu, A., Yamashita, K., Hirata, K., Yoshida, M., Tanaka, Y., Kato, H. E., Nakada-Nakura, Y., et al. (2017) Structural insights into ligand recognition by the lysophosphatidic acid receptor LPA 6, Nature, 548, 356-360, https://doi.org/10.1038/nature23448.

    Article  CAS  PubMed  Google Scholar 

  238. Yang, S., Wu, Y., Xu, T. H., de Waal, P. W., He, Y., Pu, M., Chen, Y., DeBruine, Z. J., Zhang, B., Zaidi, S. A., et al. (2018) Crystal structure of the Frizzled 4 receptor in a ligand-free state, Nature, 560, 666-670, https://doi.org/10.1038/s41586-018-0447-x.

    Article  CAS  PubMed  Google Scholar 

  239. Lin, X., Li, M., Wang, N., Wu, Y., Luo, Z., Guo, S., Han, G. W., Li, S., Yue, Y., Wei, X., et al. (2020) Structural basis of ligand recognition and self-activation of orphan GPR52, Nature, 579, 152-157, https://doi.org/10.1038/s41586-020-2019-0.

    Article  CAS  PubMed  Google Scholar 

  240. Asada, H., Horita, S., Hirata, K., Shiroishi, M., Shiimura, Y., Iwanari, H., Hamakubo, T., Shimamura, T., Nomura, N., Kusano-Arai, O., et al. (2018) Crystal structure of the human angiotensin II type 2 receptor bound to an angiotensin II analog, Nat. Struct. Mol. Biol., 25, 570-576, https://doi.org/10.1038/s41594-018-0079-8.

    Article  CAS  PubMed  Google Scholar 

  241. Coulter, A., and Harris, R. (1983) Simplified preparation of rabbit fab fragments, J. Immunol. Methods, 59, 199-203, https://doi.org/10.1016/0022-1759(83)90031-5.

    Article  CAS  PubMed  Google Scholar 

  242. Ishchenko, A., Wacker, D., Kapoor, M., Zhang, A., Han, G. W., Basu, S., Patel, N., Messerschmidt, M., Weierstall, U., Liu, W., et al. (2017) Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody, Proc. Natl. Acad. Sci. USA, 114, 8223-8228, https://doi.org/10.1073/pnas.1700891114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Maeda, S., Shiimura, Y., Asada, H., Hirata, K., Luo, F., Nango, E., Tanaka, N., Toyomoto, M., Inoue, A., Aoki, J., et al. (2021) Endogenous agonist-bound S1PR3 structure reveals determinants of G protein-subtype bias, Sci. Adv., 7, eabf5325, https://doi.org/10.1126/sciadv.abf5325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Asada, H., Inoue, A., Ngako Kadji, F. M., Hirata, K., Shiimura, Y., Im, D., Shimamura, T., Nomura, N., Iwanari, H., Hamakubo, T., et al. (2020) The crystal structure of angiotensin II type 2 receptor with endogenous peptide hormone, Structure, 28, 418-425.e4, https://doi.org/10.1016/j.str.2019.12.003.

    Article  CAS  PubMed  Google Scholar 

  245. Shiimura, Y., Horita, S., Hamamoto, A., Asada, H., Hirata, K., Tanaka, M., Mori, K., Uemura, T., Kobayashi, T., Iwata, S., et al. (2020) Structure of an antagonist-bound ghrelin receptor reveals possible ghrelin recognition mode, Nat. Commun., 11, 4160, https://doi.org/10.1038/s41467-020-17554-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Im, D., Inoue, A., Fujiwara, T., Nakane, T., Yamanaka, Y., Uemura, T., Mori, C., Shiimura, Y., Kimura, K. T., Asada, H., et al. (2020) Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone, Nat. Commun., 11, 6442, https://doi.org/10.1038/s41467-020-20221-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammers, C., Songa, E. B., Bendahman, N., and Hammers, R. (1993) Naturally occurring antibodies devoid of light chains, Nature, 363, 446-448, https://doi.org/10.1038/363446a0.

    Article  CAS  PubMed  Google Scholar 

  248. Rasmussen, S. G. F., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., Devree, B. T., Rosenbaum, D. M., Thian, F. S., Kobilka, T. S., et al. (2011) Structure of a nanobody-stabilized active state of the β2 adrenoceptor, Nature, 469, 175-181, https://doi.org/10.1038/nature09648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Weichert, D., Kruse, A. C., Manglik, A., Hiller, C., Zhang, C., Hübner, H., Kobilka, B. K., and Gmeiner, P. (2014) Covalent agonists for studying G protein-coupled receptor activation, Proc. Natl. Acad. Sci. USA, 111, 10744-10748, https://doi.org/10.1073/pnas.1410415111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Staus, D. P., Strachan, R. T., Manglik, A., Pani, B., Kahsai, A. W., Kim, T. H., Wingler, L. M., Ahn, S., Chatterjee, A., Masoudi, A., et al. (2016) Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation, Nature, 535, 448-452, https://doi.org/10.1038/nature18636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Che, T., English, J., Krumm, B. E., Kim, K., Pardon, E., Olsen, R. H. J., Wang, S., Zhang, S., Diberto, J. F., Sciaky, N., et al. (2020) Nanobody-enabled monitoring of kappa opioid receptor states, Nat. Commun., 11, 1145, https://doi.org/10.1038/s41467-020-14889-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ghosh, E., Kumari, P., Jaiman, D., and Shukla, A. K. (2015) Methodological advances: the unsung heroes of the GPCR structural revolution, Nat. Rev. Mol. Cell Biol., 16, 69-81, https://doi.org/10.1038/nrm3933.

    Article  CAS  PubMed  Google Scholar 

  253. Robertson, M. J., Papasergi-Scott, M. M., He, F., Seven, A. B., Meyerowitz, J. G., Panova, O., Peroto, M. C., Che, T., and Skiniotis, G. (2022) Structure determination of inactive-state GPCRs with a universal nanobody, Nat. Struct. Mol. Biol., 29, 1188-1195, https://doi.org/10.1038/s41594-022-00859-8.

    Article  CAS  PubMed  Google Scholar 

  254. Che, T., Majumdar, S., Zaidi, S. A., Ondachi, P., McCorvy, J. D., Wang, S., Mosier, P. D., Uprety, R., Vardy, E., Krumm, B. E., et al. (2018) Structure of the nanobody-stabilized active state of the kappa opioid receptor, Cell, 172, 55-67.e15, https://doi.org/10.1016/j.cell.2017.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Collins, K. D. (2004) Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process, Methods, 34, 300-311, https://doi.org/10.1016/j.ymeth.2004.03.021.

    Article  CAS  PubMed  Google Scholar 

  256. Gusach, A., Luginina, A., Marin, E., Brouillette, R. L., Besserer-Offroy, É., Longpré, J. M., Ishchenko, A., Popov, P., Patel, N., Fujimoto, T., et al. (2019) Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors, Nat. Commun., 10, 5573, https://doi.org/10.1038/s41467-019-13348-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Michaelian, N., Sadybekov, A., Besserer-Offroy, É., Han, G. W., Krishnamurthy, H., Zamlynny, B. A., Fradera, X., Siliphaivanh, P., Presland, J., Spencer, K. B., et al. (2021) Structural insights on ligand recognition at the human leukotriene B4 receptor 1, Nat. Commun., 12, 2971, https://doi.org/10.1038/s41467-021-23149-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Luginina, A., Gusach, A., Marin, E., Mishin, A., Brouillette, R., Popov, P., Shiriaeva, A., Besserer-Offroy, É., Longpré, J.-M., Lyapina, E., et al. (2019) Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs, Sci. Adv., 5, eaax2518, https://doi.org/10.1126/sciadv.aax2518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Batyuk, A., Galli, L., Ishchenko, A., Han, G. W., Gati, C., Popov, P. A., Lee, M. Y., Stauch, B., White, T. A., Barty, A., et al. (2016) Native phasing of x-ray free-electron laser data for a G protein-coupled receptor, Sci. Adv., 2, e160029, https://doi.org/10.1126/sciadv.1600292.

    Article  CAS  Google Scholar 

  260. Holik, H., Heß, H., Müller, W., and Lüdtke, O. (2013) Unit Operations, In Handbook of Paper and Board: Second Edition (Holik, H., ed.), 1, 351-472, https://doi.org/10.1002/9783527652495.ch7.

  261. Krumm, B. E., Lee, S., Bhattacharya, S., Botos, I., White, C. F., Du, H., Vaidehi, N., and Grisshammer, R. (2016) Structure and dynamics of a constitutively active neurotensin receptor, Sci. Rep., 6, 38564, https://doi.org/10.1038/srep38564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Vagenende, V., Yap, M. G. S., and Trout, B. L. (2009) Mechanisms of protein stabilization and prevention of protein aggregation by glycerol, Biochemistry, 48, 11084-11096, https://doi.org/10.1021/bi900649t.

    Article  CAS  PubMed  Google Scholar 

  263. Krumm, B. E., White, J. F., Shah, P., and Grisshammer, R. (2015) Structural prerequisites for G-protein activation by the neurotensin receptor, Nat. Commun., 6, 7895, https://doi.org/10.1038/ncomms8895.

    Article  CAS  PubMed  Google Scholar 

  264. Jang, K., Kim, H. G., Hlaing, S. H. S., Kang, M., Choe, H.-W., and Kim, Y. J. (2022) A short review on cryoprotectants for 3D protein structure analysis, Crystals, 12, 138, https://doi.org/10.3390/cryst12020138.

    Article  CAS  Google Scholar 

  265. Suttapitugsakul, S., Xiao, H., Smeekens, J., and Wu, R. (2017) Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics, Mol. BioSystems, 13, 2574-2582, https://doi.org/10.1039/C7MB00393E.

    Article  CAS  Google Scholar 

  266. Tao, Y. X., and Conn, P. M. (2014) Chaperoning G protein-coupled receptors: From cell biology to therapeutics, Endocr. Rev., 35, 602-647, https://doi.org/10.1210/er.2013-1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Lim, W. K., Kanelakis, K. C., and Neubig, R. R. (2013) Regulation of G protein signaling by the 70kDa heat shock protein, Cell. Signall., 25, 389-396, https://doi.org/10.1016/j.cellsig.2012.11.002.

    Article  CAS  Google Scholar 

  268. Barth, H. G., Jackson, C., and Boyes, B. E. (1994) Size exclusion chromatography, Anal. Chem., 66, 595-620, https://doi.org/10.1021/ac00084a022.

    Article  Google Scholar 

  269. Duong-Ly, K. C., and Gabelli, S. B. (2014) Gel filtration chromatography (size exclusion chromatography) of proteins, Methods Enzymol., 541, 105-114, https://doi.org/10.1016/B978-0-12-420119-4.00009-4.

    Article  CAS  PubMed  Google Scholar 

  270. Kawate, T., and Gouaux, E. (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins, Structure, 14, 673-681, https://doi.org/10.1016/j.str.2006.01.013.

    Article  CAS  PubMed  Google Scholar 

  271. Gimpl, K., Klement, J., and Keller, S. (2016) Characterising protein/detergent complexes by triple-detection size-exclusion chromatography, Biol. Procedures Online, 18, 4, https://doi.org/10.1186/s12575-015-0031-9.

    Article  CAS  Google Scholar 

  272. Newby, Z. E. R., O’Connell, J. D., Gruswitz, F., Hays, F. A., Harries, W. E. C., Harwood, I. M., Ho, J. D., Lee, J. K., Savage, D. F., Miercke, L. J. W., et al. (2009) A general protocol for the crystallization of membrane proteins for X-ray structural investigation, Nat. Protoc., 4, 619-637, https://doi.org/10.1038/nprot.2009.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Wyatt, P. J. (1993) Light scattering and the absolute characterization of macromolecules, Anal. Chim. Acta, 272, 1-40, https://doi.org/10.1016/0003-2670(93)80373-S.

    Article  CAS  Google Scholar 

  274. Some, D., Amartely, H., Tsadok, A., and Lebendiker, M. (2019) Characterization of proteins by size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), J. Visual. Exp., 2019, e59615, https://doi.org/10.3791/59615-v.

    Article  Google Scholar 

  275. Dupeux, F., Röwer, M., Seroul, G., Blot, D., and Márquez, J. A. (2011) A thermal stability assay can help to estimate the crystallization likelihood of biological samples, Acta Crystallogr. Sect. D Biol. Crystallogr., 67, 915-919, https://doi.org/10.1107/S0907444911036225.

    Article  CAS  Google Scholar 

  276. Huynh, K., and Partch, C. L. (2015) Analysis of protein stability and ligand interactions by thermal shift assay, Curr. Protocols Protein Sci., 79, 28.9.1-28.9.14, https://doi.org/10.1002/0471140864.ps2809s79.

    Article  Google Scholar 

  277. Lo, M. C., Aulabaugh, A., Jin, G., Cowling, R., Bard, J., Malamas, M., and Ellestad, G. (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery, Anal. Biochem., 332, 153-159, https://doi.org/10.1016/j.ab.2004.04.031.

    Article  CAS  PubMed  Google Scholar 

  278. Real-Hohn, A., Groznica, M., Löffler, N., Blaas, D., and Kowalski, H. (2020) NanoDSF: in vitro label-free method to monitor picornavirus uncoating and test compounds affecting particle stability, Front. Microbiol., 11, 1442, https://doi.org/10.3389/fmicb.2020.01442.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Duy, C., and Fitter, J. (2006) How aggregation and conformational scrambling of unfolded states govern fluorescence emission spectra, Biophys. J., 90, 3704-3711, https://doi.org/10.1529/biophysj.105.078980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Kotov, V., Bartels, K., Veith, K., Josts, I., Subhramanyam, U. K. T., Günther, C., Labahn, J., Marlovits, T. C., Moraes, I., Tidow, H., et al. (2019) High-throughput stability screening for detergent-solubilized membrane proteins, Sci. Rep., 9, 10379, https://doi.org/10.1038/s41598-019-46686-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Lea, W. A., and Simeonov, A. (2012) Differential scanning fluorometry signatures as indicators of enzyme inhibitor mode of action: case study of glutathione S-transferase, PLoS One, 7, e36219, https://doi.org/10.1371/journal.pone.0036219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Pardon, E., Laeremans, T., Triest, S., Rasmussen, S. G. F., Wohlkönig, A., Ruf, A., Muyldermans, S., Hol, W. G. J., Kobilka, B. K., and Steyaert, J. (2014) A general protocol for the generation of Nanobodies for structural biology, Nat. Protocols, 9, 674-693, https://doi.org/10.1038/nprot.2014.039.

    Article  CAS  PubMed  Google Scholar 

  283. Wingler, L. M., McMahon, C., Staus, D. P., Lefkowitz, R. J., and Kruse, A. C. (2019) Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody, Cell, 176, 479-490.e12, https://doi.org/10.1016/j.cell.2018.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Kruse, A. C., Ring, A. M., Manglik, A., Hu, J., Hu, K., Eitel, K., Hübner, H., Pardon, E., Valant, C., Sexton, P. M., et al. (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor, Nature, 504, 101-106, https://doi.org/10.1038/nature12735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Deshpande, I., Liang, J., Hedeen, D., Roberts, K. J., Zhang, Y., Ha, B., Latorraca, N. R., Faust, B., Dror, R. O., Beachy, P. A., et al. (2019) Smoothened stimulation by membrane sterols drives Hedgehog pathway activity, Nature, 571, 284-288, https://doi.org/10.1038/s41586-019-1355-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Haffke, M., Fehlmann, D., Rummel, G., Boivineau, J., Duckely, M., Gommermann, N., Cotesta, S., Sirockin, F., Freuler, F., Littlewood-Evans, A., et al. (2019) Structural basis of species-selective antagonist binding to the succinate receptor, Nature, 574, 581-585, https://doi.org/10.1038/s41586-019-1663-8.

    Article  CAS  PubMed  Google Scholar 

  287. Zhang, H.-L., Ye, H.-Q., Deng, C.-L., Liu, S.-Q., Shi, P.-Y., Qin, C.-F., Yuan, Z.-M., and Zhang, B. (2017) Generation and characterization of West Nile pseudo-infectious reporter virus for antiviral screening, Antiviral Res., 141, 38-47, https://doi.org/10.1016/j.antiviral.2017.02.006.

    Article  CAS  PubMed  Google Scholar 

  288. Gilman, A. G. (1987) G proteins: transducers of receptor-generated signals, Annu. Rev. Biochem., 56, 615-649, https://doi.org/10.1146/annurev.bi.56.070187.003151.

    Article  CAS  PubMed  Google Scholar 

  289. Hepler, J. R., Gilman, A. G. (1992) G proteins, Trends Biochem. Sci., 17, 383-387, https://doi.org/10.1016/0968-0004(92)90005-T.

    Article  CAS  PubMed  Google Scholar 

  290. Neves, S. R., Ram, P. T., and Iyengar, R. (2002) G protein pathways, Science, 296, 1636-1639, https://doi.org/10.1126/science.1071550.

    Article  CAS  PubMed  Google Scholar 

  291. Hillenbrand, M., Schori, C., Schöppe, J., and Plückthun, A. (2015) Comprehensive analysis of heterotrimeric G-protein complex diversity and their interactions with GPCRs in solution, Proc. Natl. Acad. Sci. USA, 112, E1181-E1190, https://doi.org/10.1073/pnas.1417573112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Masuho, I., Skamangas, N. K., Muntean, B. S., and Martemyanov, K. A. (2021) Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling, Cell Systems, 12, 324-337.e5, https://doi.org/10.1016/j.cels.2021.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Milligan, G., and Kostenis, E. (2006) Heterotrimeric G-proteins: a short history, Br. J. Pharmacol., 147, S46-S55, https://doi.org/10.1038/sj.bjp.0706405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Carpenter, B., and Tate, C. G. (2016) Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation, Protein Engin. Design Select., 29, 583-593, https://doi.org/10.1093/protein/gzw049.

    Article  CAS  Google Scholar 

  295. Carpenter, B., and Tate, C. (2017) Expression and purification of mini G proteins from Escherichia coli, BIO Protocol, 7, e2235, https://doi.org/10.21769/BioProtoc.2235.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Liu, X., Xu, X., Hilger, D., Aschauer, P., Tiemann, J. K. S., Du, Y., Liu, H., Hirata, K., Sun, X., Guixà-González, R., et al. (2019) Structural insights into the process of GPCR-G protein complex formation, Cell, 177, 1243-1251.e12, https://doi.org/10.1016/j.cell.2019.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Standfuss, J., Edwards, P. C., D’Antona, A., Fransen, M., Xie, G., Oprian, D. D., and Schertler, G. F. X. (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin, Nature, 471, 656-660, https://doi.org/10.1038/nature09795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Scheerer, P., Park, J. H., Hildebrand, P. W., Kim, Y. J., Krauß, N., Choe, H. W., Hofmann, K. P., and Ernst, O. P. (2008) Crystal structure of opsin in its G-protein-interacting conformation, Nature, 455, 497-502, https://doi.org/10.1038/nature07330.

    Article  CAS  PubMed  Google Scholar 

  299. Singhal, A., Guo, Y., Matkovic, M., Schertler, G., Deupi, X., Yan, E. C., and Standfuss, J. (2016) Structural role of the T94I rhodopsin mutation in congenital stationary night blindness, EMBO Rep., 17, 1431-1440, https://doi.org/10.15252/embr.201642671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Singhal, A., Ostermaier, M. K., Vishnivetskiy, S. A., Panneels, V., Homan, K. T., Tesmer, J. J. G., Veprintsev, D., Deupi, X., Gurevich, V. V., Schertler, G. F. X., et al. (2013) Insights into congenital stationary night blindness based on the structure of G90D rhodopsin, EMBO Rep., 14, 520-526, https://doi.org/10.1038/embor.2013.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Mattle, D., Singhal, A., Schmid, G., Dawson, R., and Standfuss, J. (2015) Mammalian Expression, Purification, and Crystallization of Rhodopsin variants, in Rhodopsin: Methods and Protocols, pp. 39-54, https://doi.org/10.1007/978-1-4939-2330-4_3.

  302. Park, J. H., Morizumi, T., Li, Y., Hong, J. E., Pai, E. F., Hofmann, K. P., Choe, H. W., and Ernst, O. P. (2013) Opsin, a structural model for olfactory receptors? Angewandte Chemie, 52, 11021-11024, https://doi.org/10.1002/anie.201302374.

    Article  CAS  PubMed  Google Scholar 

  303. Deupi, X., Edwards, P., Singhal, A., Nickle, B., Oprian, D., Schertler, G., and Standfuss, J. (2012) Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II, Proc. Natl. Acad. Sci. USA, 109, 119-124, https://doi.org/10.1073/pnas.1114089108.

    Article  PubMed  Google Scholar 

  304. Choe, H. W., Kim, Y. J., Park, J. H., Morizumi, T., Pai, E. F., Krau, N., Hofmann, K. P., Scheerer, P., and Ernst, O. P. (2011) Crystal structure of metarhodopsin II, Nature, 471, 651-655, https://doi.org/10.1038/nature09789.

    Article  CAS  PubMed  Google Scholar 

  305. Sun, B., Feng, D., Chu, M. L.-H., Fish, I., Lovera, S., Sands, Z. A., Kelm, S., Valade, A., Wood, M., Ceska, T., et al. (2021) Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist, Nat. Commun., 12, 3305, https://doi.org/10.1038/s41467-021-23519-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. van Gastel, J., Hendrickx, J. O., Leysen, H., Santos-Otte, P., Luttrell, L. M., Martin, B., and Maudsley, S. (2018) β-arrestin based receptor signaling paradigms: potential therapeutic targets for complex age-related disorders, Front. Pharmacol., 9, 1369, https://doi.org/10.3389/fphar.2018.01369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Zhou, X. E., Gao, X., Barty, A., Kang, Y., He, Y., Liu, W., Ishchenko, A., White, T. A., Yefanov, O., Han, G. W., et al. (2016) X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex, Sci. Data, 3, 160021, https://doi.org/10.1038/sdata.2016.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Szczepek, M., Beyrière, F., Hofmann, K. P., Elgeti, M., Kazmin, R., Rose, A., Bartl, F. J., von Stetten, D., Heck, M., Sommer, M. E., et al. (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin, Nat. Commun., 5, 4801, https://doi.org/10.1038/ncomms5801.

    Article  CAS  PubMed  Google Scholar 

  309. Liang, Y. L., Khoshouei, M., Radjainia, M., Zhang, Y., Glukhova, A., Tarrasch, J., Thal, D. M., Furness, S. G. B., Christopoulos, G., Coudrat, T., et al. (2017) Phase-plate cryo-EM structure of a class B GPCR-G-protein complex, Nature, 546, 118-123, https://doi.org/10.1038/nature22327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Fu, Y., Yang, Y., Zhang, H., Farley, G., Wang, J., Quarles, K. A., Weng, Z., and Zamore, P. D. (2018) The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology, eLife, 7, e31628, https://doi.org/10.7554/eLife.31628.

    Article  PubMed  PubMed Central  Google Scholar 

  311. Papasergi-Scott, M. M., Robertson, M. J., Seven, A. B., Panova, O., Mathiesen, J. M., and Skiniotis, G. (2020) Structures of metabotropic GABAB receptor, Nature, 584, 310-314, https://doi.org/10.1038/s41586-020-2469-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Jeong, E., Kim, Y., Jeong, J., and Cho, Y. (2021) Structure of the class C orphan GPCR GPR158 in complex with RGS7-Gβ5, Nat. Commun., 12, 6805, https://doi.org/10.1038/s41467-021-27147-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Patil, D. N., Singh, S., Laboute, T., Strutzenberg, T. S., Qiu, X., Wu, D., Novick, S. J., Robinson, C. V., Griffin, P. R., Hunt, J. F., et al. (2022) Cryo-EM structure of human GPR158 receptor coupled to the RGS7-Gb5 signaling complex, Science, 375, 86-91, https://doi.org/10.1126/science.abl4732.

    Article  CAS  PubMed  Google Scholar 

  314. Park, J., Zuo, H., Frangaj, A., Fu, Z., Yen, L. Y., Zhang, Z., Mosyak, L., Slavkovich, V. N., Liu, J., Ray, K. M., et al. (2021) Symmetric activation and modulation of the human calcium-sensing receptor, Proc. Natl. Acad. Sci. USA, 118, e2115849118, https://doi.org/10.1073/pnas.2115849118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Fang, W., Yang, F., Xu, C., Ling, S., Lin, L., Zhou, Y., Sun, W., Wang, X., Liu, P., Rondard, P., et al. (2022) Structural basis of the activation of metabotropic glutamate receptor 3, Cell Res., 32, 695-698, https://doi.org/10.1038/s41422-022-00623-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Duan, J., Xu, P., Cheng, X., Mao, C., Croll, T., He, X., Shi, J., Luan, X., Yin, W., You, E., et al. (2021) Structures of full-length glycoprotein hormone receptor signalling complexes, Nature, 598, 688-692, https://doi.org/10.1038/s41586-021-03924-2.

    Article  CAS  PubMed  Google Scholar 

  317. Bross, P., Andersen, B. A., Winter, V., Kräutle, F., Jensen, T. G., Nandy, A., Kølvraa, S., Ghisla, S., Bolund, L., and Gregersen, N. (1993) Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation, Biochim. Biophys. Acta, 1182, 264-274, https://doi.org/10.1016/0925-4439(93)90068-C.

    Article  CAS  PubMed  Google Scholar 

  318. Rivas, F. V., Tolia, N. H., Song, J. J., Aragon, J. P., Liu, J., Hannon, G. J., and Joshua-Tor, L. (2005) Purified Argonaute2 and an siRNA form recombinant human RISC, Nat. Struct. Mol. Biol., 12, 340-349, https://doi.org/10.1038/nsmb918.

    Article  CAS  PubMed  Google Scholar 

  319. Tolia, N. H., and Joshua-Tor, L. (2006) Strategies for protein coexpression in Escherichia coli, Nature Methods, 3, 55-64, https://doi.org/10.1038/nmeth0106-55.

    Article  CAS  PubMed  Google Scholar 

  320. Kost, T. A., Condreay, J. P., and Jarvis, D. L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells, Nat. Biotechnol., 23, 567-575, https://doi.org/10.1038/nbt1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Aricescu, A. R., Lu, W., and Jones, E. Y. (2006) A time- and cost-efficient system for high-level protein production in mammalian cells, Acta Crystallogr. Sect. D Biol. Crystallogr., 62, 1243-1250, https://doi.org/10.1107/S0907444906029799.

    Article  CAS  Google Scholar 

  322. Aricescu, A. R., Assenberg, R., Bill, R. M., Busso, D., Chang, V. T., Davis, S. J., Dubrovsky, A., Gustafsson, L., Hedfalk, K., Heinemann, U., et al. (2006) Eukaryotic expression: developments for structural proteomics, Acta Crystallogr. Sect. D Biol. Crystallogr., 62, 1114-1124, https://doi.org/10.1107/S0907444906029805.

    Article  CAS  Google Scholar 

  323. Perrakis, A., and Romier, C. (2008) Assembly of protein complexes by coexpression in prokaryotic and eukaryotic hosts: an overview, Methods Mol. Biol., 426, 247-256, https://doi.org/10.1007/978-1-60327-058-8_15.

    Article  CAS  PubMed  Google Scholar 

  324. Seven, A. B., Barros-Álvarez, X., de Lapeyrière, M., Papasergi-Scott, M. M., Robertson, M. J., Zhang, C., Nwokonko, R. M., Gao, Y., Meyerowitz, J. G., Rocher, J. P., et al. (2021) G-protein activation by a metabotropic glutamate receptor, Nature, 595, 450-454, https://doi.org/10.1038/s41586-021-03680-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Draper-Joyce, C. J., Khoshouei, M., Thal, D. M., Liang, Y. L., Nguyen, A. T. N., Furness, S. G. B., Venugopal, H., Baltos, J. A., Plitzko, J. M., Danev, R., et al. (2018) Structure of the adenosine-bound human adenosine A1 receptor-Gi complex, Nature, 558, 559-565, https://doi.org/10.1038/s41586-018-0236-6.

    Article  CAS  PubMed  Google Scholar 

  326. Sun, B., Willard, F. S., Feng, D., Alsina-Fernandez, J., Chen, Q., Vieth, M., Ho, J. D., Showalter, A. D., Stutsman, C., Ding, L., et al. (2022) Structural determinants of dual incretin receptor agonism by tirzepatide, Proc. Natl. Acad. Sci. USA, 119, e2116506119, https://doi.org/10.1073/pnas.2116506119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Zhang, H., Chen, L. N., Yang, D., Mao, C., Shen, Q., Feng, W., Shen, D. D., Dai, A., Xie, S., Zhou, Y., et al. (2021) Structural insights into ligand recognition and activation of the melanocortin-4 receptor, Cell Res., 31, 1163-1175, https://doi.org/10.1038/s41422-021-00552-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Koehl, A., Hu, H., Maeda, S., Zhang, Y., Qu, Q., Paggi, J. M., Latorraca, N. R., Hilger, D., Dawson, R., Matile, H., et al. (2018) Structure of the µ-opioid receptor-Gi protein complex, Nature, 558, 547-552, https://doi.org/10.1038/s41586-018-0219-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Connor, M., and Christie, M. J. (1999) Opioid receptor signalling mechanisms, Clin. Exp. Pharmacol. Physiol., 26, 493-499, https://doi.org/10.1046/j.1440-1681.1999.03049.x.

    Article  CAS  PubMed  Google Scholar 

  330. Raffa, R. B., Martinez, R. P., and Connelly, C. D. (1994) G-protein antisense oligodeoxyribonucleotides and µ-opioid supraspinal antinociception, Eur. J. Pharmacol., 258, R5-R7, https://doi.org/10.1016/0014-2999(94)90073-6.

    Article  CAS  PubMed  Google Scholar 

  331. Strathmann, M. P., and Simon, M. I. (1991) Gα12 and Gα13 subunits define a fourth class of G protein α subunits, Proc. Natl. Acad. Sci. USA, 88, 5582-5586, https://doi.org/10.1073/pnas.88.13.5582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Riobo, N. A., and Manning, D. R. (2005) Receptors coupled to heterotrimeric G proteins of the G12 family, Trends Pharmacol. Sci., 26, 146-154, https://doi.org/10.1016/j.tips.2005.01.007.

    Article  CAS  PubMed  Google Scholar 

  333. Kozasa, T., Jiang, X., Hart, M. J., Sternweis, P. M., Singer, W. D., Gilman, A. G., Bollag, G., and Sternweis, P. C. (1998) p115 RhoGEF, a GTPase Activating Protein for Gα 12 and Gα 13, Science, 280, 2109-2111, https://doi.org/10.1126/science.280.5372.2109.

    Article  CAS  PubMed  Google Scholar 

  334. Chen, H., Chen, K., Huang, W., Staudt, L. M., Cyster, J. G., and Li, X. (2022) Structure of S1PR2-heterotrimeric G13 signaling complex, Sci. Adv., 8, 67, https://doi.org/10.1126/sciadv.abn0067.

    Article  CAS  Google Scholar 

  335. Barros-Álvarez, X., Nwokonko, R. M., Vizurraga, A., Matzov, D., He, F., Papasergi-Scott, M. M., Robertson, M. J., Panova, O., Yardeni, E. H., Seven, A. B., et al. (2022) The tethered peptide activation mechanism of adhesion GPCRs, Nature, 604, 757-762, https://doi.org/10.1038/s41586-022-04575-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Kreutz, B., Yau, D. M., Nance, M. R., Tanabe, S., Tesmer, J. J. G., and Kozasa, T. (2006) A new approach to producing functional Gα subunits yields the activated and deactivated structures of Gα12/13 proteins, Biochemistry, 45, 167-174, https://doi.org/10.1021/bi051729t.

    Article  CAS  PubMed  Google Scholar 

  337. Singer, W. D., Brown, H. A., and Sternweis, P. C. (1997) Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D, Annu. Rev. Biochem., 66, 475-509, https://doi.org/10.1146/annurev.biochem.66.1.475.

    Article  CAS  PubMed  Google Scholar 

  338. Taylor, S. J., Chae, H. Z., Rhee, S. G., and Exton, J. H. (1991) Activation of the β1 isozyme of phospholipase C by α subunits of the Gq class of G proteins, Nature, 350, 516-518, https://doi.org/10.1038/350516a0.

    Article  CAS  PubMed  Google Scholar 

  339. Smrcka, A. V., Hepler, J. R., Brown, K. O., and Sternweis, P. C. (1991) Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq, Science, 251, 804-807, https://doi.org/10.1126/science.1846707.

    Article  CAS  PubMed  Google Scholar 

  340. Maeda, S., Koehl, A., Matile, H., Hu, H., Hilger, D., Schertler, G. F. X., Manglik, A., Skiniotis, G., Dawson, R. J. P., and Kobilka, B. K. (2018) Development of an antibody fragment that stabilizes GPCR/G-protein complexes, Nat. Commun., 9, 3712, https://doi.org/10.1038/s41467-018-06002-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Wan, Q., Okashah, N., Inoue, A., Nehme, R., Carpenter, B., Tate, C. G., and Lambert, N. A. (2018) Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells, J. Biol. Chem., 293, 7466-7473, https://doi.org/10.1074/jbc.RA118.001975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Meyerowitz, J. G., Robertson, M. J., Barros-Álvarez, X., Panova, O., Nwokonko, R. M., Gao, Y., and Skiniotis, G. (2022) The oxytocin signaling complex reveals a molecular switch for cation dependence, Nat. Struct. Mol. Biol., 29, 274-281, https://doi.org/10.1038/s41594-022-00728-4.

    Article  CAS  PubMed  Google Scholar 

  343. Xia, R., Wang, N., Xu, Z., Lu, Y., Song, J., Zhang, A., Guo, C., and He, Y. (2021) Cryo-EM structure of the human histamine H1 receptor/Gq complex, Nat. Commun., 12, 2086, https://doi.org/10.1038/s41467-021-22427-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Kim, K., Che, T., Panova, O., DiBerto, J. F., Lyu, J., Krumm, B. E., Wacker, D., Robertson, M. J., Seven, A. B., Nichols, D. E., et al. (2020) Structure of a Hallucinogen-Activated Gq-Coupled 5-HT2A Serotonin Receptor, Cell, 182, 1574-1588.e19, https://doi.org/10.1016/j.cell.2020.08.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Benovic, J. L., Kühn, H., Weyand, I., Codina, J., Caron, M. G., and Lefkowitz, R. J. (1987) Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48- kDa protein), Proc. Natl. Acad. Sci. USA, 84, 8879-8882, https://doi.org/10.1073/pnas.84.24.8879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Luttrell, L. M., Roudabush, F. L., Choy, E. W., Miller, W. E., Field, M. E., Pierce, K. L., and Lefkowitz, R. J. (2001) Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds, Proc. Natl. Acad. Sci. USA, 98, 2449-2454, https://doi.org/10.1073/pnas.041604898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. McDonald, P. H., Chow, C.-W., Miller, W. E., Laporte, S. A., Field, M. E., Lin, F.-T., Davis, R. J., and Lefkowitz, R. J. (2000) β-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3, Science, 290, 1574-1577, https://doi.org/10.1126/science.290.5496.1574.

    Article  CAS  PubMed  Google Scholar 

  348. Luttrell, L. M., Ferguson, S. S. G., Daaka, Y., Miller, W. E., Maudsley, S., Della Rocca, G. J., Lin, F. T., Kawakatsu, H., Owada, K., Luttrell, D. K., et al. (1999) β-arrestin-dependent formation of β2 adrenergic receptor-src protein kinase complexes, Science, 283, 655-661, https://doi.org/10.1126/science.283.5402.655.

    Article  CAS  PubMed  Google Scholar 

  349. Yin, W., Li, Z., Jin, M., Yin, Y. L., de Waal, P. W., Pal, K., Yin, Y., Gao, X., He, Y., Gao, J., et al. (2019) A complex structure of arrestin-2 bound to a G protein-coupled receptor, Cell Res., 29, 971-983, https://doi.org/10.1038/s41422-019-0256-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Staus, D. P., Hu, H., Robertson, M. J., Kleinhenz, A. L. W., Wingler, L. M., Capel, W. D., Latorraca, N. R., Lefkowitz, R. J., and Skiniotis, G. (2020) Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc, Nature, 579, 297-302, https://doi.org/10.1038/s41586-020-1954-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Huang, W., Masureel, M., Qu, Q., Janetzko, J., Inoue, A., Kato, H. E., Robertson, M. J., Nguyen, K. C., Glenn, J. S., Skiniotis, G., et al. (2020) Structure of the neurotensin receptor 1 in complex with β-arrestin 1, Nature, 579, 303-308, https://doi.org/10.1038/s41586-020-1953-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Weiss, E. R., Ducceschi, M. H., Horner, T. J., Li, A., Craft, C. M., and Osawa, S. (2001) Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: Implications for cone cell phototransduction, J. Neurosci., 21, 9175-9184, https://doi.org/10.1523/JNEUROSCI.21-23-09175.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Calebiro, D., Nikolaev, V. O., Gagliani, M. C., de Filippis, T., Dees, C., Tacchetti, C., Persani, L., and Lohse, M. J. (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors, PLoS Biol., 7, e1000172, https://doi.org/10.1371/journal.pbio.1000172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Ferrandon, S., Feinstein, T. N., Castro, M., Wang, B., Bouley, R., Potts, J. T., Gardella, T. J., and Vilardaga, J. P. (2009) Sustained cyclic AMP production by parathyroid hormone receptor endocytosis, Nat. Chem. Biol., 5, 734-742, https://doi.org/10.1038/nchembio.206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Feinstein, T. N., Yui, N., Webber, M. J., Wehbi, V. L., Stevenson, H. P., King, J. D., Hallows, K. R., Brown, D., Bouley, R., and Vilardaga, J. P. (2013) Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin, J. Biol. Chem., 288, 27849-27860, https://doi.org/10.1074/jbc.M112.445098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Thomsen, A. R. B., Plouffe, B., Cahill, T. J., Shukla, A. K., Tarrasch, J. T., Dosey, A. M., Kahsai, A. W., Strachan, R. T., Pani, B., Mahoney, J. P., et al. (2016) GPCR-G protein-β-Arrestin super-complex mediates sustained G protein signaling, Cell, 166, 907-919, https://doi.org/10.1016/j.cell.2016.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Nguyen, A. H., Thomsen, A. R. B., Cahill, T. J., Huang, R., Huang, L.-Y., Marcink, T., Clarke, O. B., Heissel, S., Masoudi, A., Ben-Hail, D., et al. (2019) Structure of an endosomal signaling GPCR-G protein-β-arrestin megacomplex, Nat. Struct. Mol. Biol., 26, 1123-1131, https://doi.org/10.1038/s41594-019-0330-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Review of Membrane model systems in GPCR studies were supported by the Ministry of Science and Higher Education of the Russian Federation (agreement 075-03-2023-106, project FSMG-2020-0003). Review of Characterization of Protein Preparations and Quality Control was supported by the Russian Science Foundation (project no. 22-74-00024, https://rscf.ru/project/22-74-00024/ [in Russian]). Other parts of the work were supported by the Russian Science Foundation (project no. 22-74-10036; https://rscf.ru/project/22-74-10036/ [in Russian]).

Author information

Authors and Affiliations

Authors

Contributions

Daria A. Dmitrieva was responsible for the “Introduction of Point Mutations”, “Alanine Scanning and StaR™ Technology”, “Directed Evolution”, “Use of Fusion Partners”, “Expression Systems for GPCR Production”, “Using Ligands for Receptor Stabilization”, “Using Antibody Fragments for Stabilization of GPCR Conformational States” sections. Tatiana V. Kotova was responsible for the “Introduction of Point Mutations”, “Alanine Scanning and StaR™ Technology” sections (with D.A.D.), “Deletion of Unordered Regions from the Receptor Amino Acid Sequence”, “Insertion of Additional Elements into the Receptor Amino Acid Sequence”, “Methods for GPCR Purification”, “Formation of Receptor Complexes with Main Interaction Partners” sections. Nadezda A. Safronova authored the “Using Salts and Chemical Agents for Purification and Stabilization of Receptors” section. Alexandra A. Sadova was responsible for the “Membrane Model Systems in GPCR Studies; Their Pros and Cons” section. Dmitrii E. Dashevskii wrote the “Characterization of Protein Preparations and Quality Control” section. Alexey V. Mishin authored the conception and the initial plan of the review, edited the whole manuscript.

Corresponding author

Correspondence to Alexey V. Mishin.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2023, Vol. 63, pp. 379-448.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrieva, D.A., Kotova, T.V., Safronova, N.A. et al. Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. Biochemistry Moscow 88 (Suppl 1), S192–S226 (2023). https://doi.org/10.1134/S0006297923140110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923140110

Keywords

Navigation