Skip to main content
Log in

Molecular Bases of Signaling Processes Regulated by Cryptochrome Sensory Photoreceptors in Plants

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The blue-light sensors, cryptochromes, compose the extensive class of flavoprotein photoreceptors, regulating signaling processes in plants underlying their development, growth, and metabolism. In several algae, cryptochromes may act not only as sensory photoreceptors but also as photolyases, catalyzing repair of the UV-induced DNA lesions. Cryptochromes bind FAD as the chromophore at the photolyase homologous region (PHR) domain and contain the cryptochrome C-terminal extension (CCE), which is absent in photolyases. Photosensory process in cryptochrome is initiated by photochemical chromophore conversions, including formation of the FAD redox forms. In the state with the chromophore reduced to neutral radical (FADH), the photoreceptor protein undergoes phosphorylation, conformational changes, and disengagement from the PHR domain and CCE with subsequent formation of oligomers of cryptochrome molecules. Photooligomerization is a structural basis of the functional activities of cryptochromes, since it ensures formation of their complexes with a variety of signaling proteins, including transcriptional factors and regulators of transcription. Interactions in such complexes change the protein signaling activities, leading to regulation of gene expression and plant photomorphogenesis. In recent years, multiple papers, reporting novel, more detailed information about the molecular mechanisms of above-mentioned processes were published. The present review mainly focuses on analysis of the data contained in these publications, particularly regarding structural aspects of the cryptochrome transitions into photoactivated states and regulatory signaling processes mediated by the cryptochrome photoreceptors in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

6-4PP:

pyrimidine 6-4 pyrimidone photoproduct

BICs:

blue light inhibitors of CRYs

CCE:

cryptochrome C-terminal extension

CIB:

CRY-interacting bHLH

CO:

constans

COP1:

constitutive photomorphogenic 1

CPD:

cyclobutane pyrimidine dimer

CPH1:

Chlamydomonas photolyase homologous 1 plant-like pCRY of Chlamydomonas reinhardtii

CPF:

cryptochrome/photolyase family

CraCRY:

animal-like aCRY of C. reinhardtii

CRY:

cryptochrome

PIF:

phytochrome-interacting factor

PPKs:

photoregulatory protein kinases

LRGs:

light-responsive genes

PHR:

photolyase homologous region

SPA:

suppressor of PHYA-105 1

UVB/UVA:

UV of B-region (290-320 nm)/UV of A-region (320-400 nm)

UVR8:

UV resistance locus 8

References

  1. Losi, A., and Gartner, W. (2012) The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors, Annu. Rev. Plant Biol., 63, 49-72, https://doi.org/10.1146/annurev-arplant-042811-105538.

    Article  CAS  PubMed  Google Scholar 

  2. Fraikin, G. Ya., Strakhovskaya, M. G., and Rubin, A. B. (2013) Biological photoreceptors of light-dependent regulatory processes, Biochemistry (Moscow), 78, 1238-1253, https://doi.org/10.1134/S0006297913110047.

    Article  CAS  PubMed  Google Scholar 

  3. Li, F.-W., and Mathews, S. (2016) Evolutionary aspects of plant photoreceptors, J. Plant Res., 129, 115-122, https://doi.org/10.1007/s10265-016-0785-4.

    Article  CAS  PubMed  Google Scholar 

  4. Podolec, R., Demarsy, E., and Ulm, R. (2021) Perception and signaling of ultraviolet-B in plants, Annu. Rev. Plant Biol., 72, 793-822, https://doi.org/10.1146/annurev-arplant-050718-095946.

    Article  CAS  PubMed  Google Scholar 

  5. Inoue, K., Nishihama, R., and Kohchi, T. (2017) Evolutionary origin of phytochrome responses and signaling in land plants: phytochrome response and signaling in basal land plants, Plant Cell Environ., 40, 2502-2508, https://doi.org/10.1111/pce.12908.

    Article  CAS  PubMed  Google Scholar 

  6. Fraikin, G. Ya., Strakhovskaya, M. G., Belenikina, N. S., and Rubin, A. B. (2015) Bacterial photosensory proteins: regulatory functions and optogenetic applications, Microbiology, 84, 461-472, https://doi.org/10.1134/S0026261715040086.

    Article  CAS  Google Scholar 

  7. Demarsy, E., Goldschmidt-Clemont, M., and Ulm, R. (2018) Coping with “dark sides of the sun” through photoreceptor signaling, Trends Plant Sci., 23, 260-271, https://doi.org/10.1016/j.tplants.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  8. Fraikin, G. Ya. (2018) Protein light sensors: photoexcited states, signaling properties and applications in optogenetics [in Russian], AR-Consalt, Moscow.

  9. Ponnu, J., and Hoecker, U. (2022) Signaling mechanisms by Arabidopsis cryptochromes, Front. Plant Sci., 13, 844714, https://doi.org/10.3389/fpls.2022.844714.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vechtomova, Y. L., Telegina, T. A., and Kritsky, M. S. (2020) Evolution of proteins of the DNA photolyase/cryptochrome family, Biochemistry (Moscow), 85 (Suppl. 1), S131-S153, https://doi.org/10.1134/S0006297920140072.

    Article  Google Scholar 

  11. Wang, Q., and Lin, C. (2020) Mechanisms of cryptochrome-mediated photoresponses in plants, Annu. Rev. Plant Biol., 71, 103-129, https://doi.org/10.1146/annurev-arplant-050718-100300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fraikin, G. (2017) Photobioregulatory Receptors, Lambert Academic Publishing, Saarbrucken.

  13. Sun, K., and Zhu, Z. (2018) Illuminating the nucleus: UVR8 interacts with more, Trends Plant Sci., 23, 279-281, https://doi.org/10.1016/j.tplants.2018.03.002.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad, M. (2016) Photocycle and signaling mechanisms of plant cryptochromes, Curr. Opin. Plant Biol., 33, 108-115, https://doi.org/10.1016/j.pbi.2016.06.013.

    Article  CAS  PubMed  Google Scholar 

  15. Christie, J. M., Blackwood, L., Petersen, J., and Sullivan, S. (2015) Plant flavoprotein photoreceptors, Plant Cell Physiol., 56, 401-413, https://doi.org/10.1093/pcp/pcu196.

    Article  CAS  PubMed  Google Scholar 

  16. Fraikin, G. Ya., and Rubin, A. B. (2022) Institute for Computer Research, in Horizons of Biophysics [in Russian] (Rubin, A. B., ed) Vol. 1, Moscow-Izhevsk, pp. 426-454.

  17. Cheng, M. C., Kathare, P. K., Paik, I., and Hug, E. (2021) Phytochrome signaling networks, Annu. Rev. Plant Biol., 72, 217-244, https://doi.org/10.1146/annurev-arplant-080620-024221.

    Article  CAS  PubMed  Google Scholar 

  18. Bae, G., and Choi, G. (2008) Decoding of light signals by plant phytochromes and their interacting proteins, Annu. Rev. Plant Biol., 59, 281-311, https://doi.org/10.1146/annurev.arplant.59.032607.092859.

    Article  CAS  PubMed  Google Scholar 

  19. Franklin, K. A., and Quail, P. H. (2010) Phytochrome functions in Arabidopsis development, J. Exp. Bot., 61, 11-24, https://doi.org/10.1093/jxb/erp304.

    Article  CAS  PubMed  Google Scholar 

  20. Fraser, D. P., Hayes, S., and Franklin, K. A. (2016) Photoreceptor crosstalk in shade avoidance, Curr. Opin. Plant Biol., 33, 1-7, https://doi.org/10.1016/jpbi.2016.03.008.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, M., and Chory, J. (2011) Phytochrome signaling mechanisms and the control of plant development, Trends Cell Biol., 21, 664-671, https://doi.org/10.1016/j.tcb.2011.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pham, V. N., Kathare, P. K., and Hug, E. (2018) Phytochromes and phytochrome interacting factors, Plant Physiol., 176, 1025-1038, https://doi.org/10.1104/pp.17.01384.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Q., Zuo, Z., Wang, X., Liu, Q., Gu, L., Oka, Y., and Lin, C. (2018) Beyond the photocycle – how cryptochromes regulate photoresponses in plants? Curr. Opin. Plant Biol., 45, 120-126, https://doi.org/10.1016/j.pbi.2018.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Demarsy, E., and Fankhauser, C. (2009) Higher plants use LOV to perceive blue light, Curr. Opin. Plant Biol., 12, 69-74, https://doi.org/10.1016/j.pbi.2008.09.002.

    Article  CAS  PubMed  Google Scholar 

  25. Christie, J. M., Arvai, A. S., Baxter, K. J., Heilmann, M., Pratt, A. J., O’Hara, A., Kelly, S. M., Hothorn, M., Smith, B. O., Hitomi, K., Jenkins, G. I., and Getzoff, E. D. (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges, Science, 335, 1492-1496, https://doi.org/10.1126/science.1218091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fraikin, G. Ya. (2018) Signaling mechanisms regulating diverse plant cell responses to UVB radiation, Biochemistry (Moscow), 83, 787-794, https://doi.org/10.1134/S0006297918070027.

    Article  CAS  PubMed  Google Scholar 

  27. Rockwell, N. C., Shang, L., Martin, S. S., and Lagarias, J. C. (2009) Distinct classes of red/far-red photochemistry within the phytochrome superfamily, Proc. Natl. Acad. Sci. USA, 106, 6123-6127, https://doi.org/10.1073/pnas.0902370106.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schwinn, K., Ferre, N., and Huix-Rotllant, M. (2020) UV-visible absorption spectrum of FAD and its reduced forms embedded in a cryptochrome protein, Phys. Chem. Chem. Phys., 22, 12447-12455, https://doi.org/10.1039/d0cp01714k.

    Article  CAS  PubMed  Google Scholar 

  29. Fraikin, G. Ya. (2022) Photosensory and signaling properties of cryptochromes, Mosc. Univ. Biol. Sci. Bull., 77, 54-63, https://doi.org/10.3103/S0096392522020031.

    Article  CAS  Google Scholar 

  30. Ahmad, M., and Cashmore, A. R. (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature, 366, 162-166, https://doi.org/10.1038/366162a0.

    Article  CAS  PubMed  Google Scholar 

  31. Sancar, A. (2004) Photolyase and cryptochrome blue-light photoreceptors, Adv. Protein Chem., 69, 73-100, https://doi.org/10.1016/S0065-3233(04)69003-6.

    Article  CAS  PubMed  Google Scholar 

  32. Cashmore, A. R., Jarillo, J. A., Wu, Y. J., and Liu, D. (1999) Cryptochromes: blue light receptors for plants and animals, Science, 284, 760-765, https://doi.org/10.1126/science.284.5415.760.

    Article  CAS  PubMed  Google Scholar 

  33. Muller, M., and Carell, T. (2009) Structural biology of DNA photolyases and cryptochromes, Curr. Opin. Struct. Biol., 19, 277-285, https://doi.org/10.1016/j.sbi.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  34. Zoltowski, B. D. (2015) Resolving cryptic aspects of cryptochrome signaling, Proc. Natl. Acad. Sci. USA, 112, 8811-8812, https://doi.org/10.1073/pnas.1511092112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahashi, J. S. (2017) Transcriptional architecture of the mammalian circadian clock, Nat. Rev. Genet., 18, 164-179, https://doi.org/10.1038/nrg.2016.150.

    Article  CAS  PubMed  Google Scholar 

  36. Wu, G., and Spalding, E. P. (2007) Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings, Proc. Natl. Acad. Sci. USA, 104, 18813-18818, https://doi.org/10.1073/pnas.0705082104.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yu, X., Klejnot, J., Zhao, X., Shalitin, D., Maymon, M., Yang, H., Lee, J., Liu, X., Lopez, J., and Lin, C. (2007) Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus, Plant Cell, 19, 3146-3156, https://doi.org/10.1105/tpc.107.053017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pooam, M., Arthaut, L.-D., Burdick, D., Link, J., Martino, C. F., and Ahmad, M. (2019) Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark, Planta, 249, 319-332, https://doi.org/10.1007/s00425-018-3002-y.

    Article  CAS  PubMed  Google Scholar 

  39. Zoltowski, B. D., Chelliah, Y., Wickramaratne, A., Jarecha, L., Karki, N., Xu, W., Mouritsen, H., Hore, P. J., Hibbs, R. E., Green, C. B., and Takahashi, J. S. (2019) Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon, Proc. Natl. Acad. Sci. USA, 116, 19449-19457, https://doi.org/10.1073/pnas.1907875116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petersen, J., Rredhi, A., Szyttenholm, J., Oldemeyer, S., Kottke, T., and Mittag, M. (2021) The world of algae reveals a broad variety of cryptochrome properties and functions, Front. Plant Sci., 12, 748760, https://doi.org/10.3389/fpls.2021.766509.

    Article  Google Scholar 

  41. Palayam, M., Ganapathy, J., Guercio, A. M., Tal, L., Deck, S. L., and Shabek, K. N. (2021) Structural insights into photoactivation of plant cryptochrome-2, Commun. Biol., 4, 28, https://doi.org/10.1038/s42003-020-01531-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Essen, L.-O., van der Horst, G. T., Batschauer, A., and Ahmad, M. (2011) The cryptochromes: blue light photoreceptors in plants and animals, Annu. Rev. Plant Biol., 62, 335-364, https://doi.org/10.1146/annurev-arplant-042110-103759.

    Article  CAS  PubMed  Google Scholar 

  43. Ozturk, N. (2017) Phylogenetic and functional classification of the photolyase/cryptochrome family, Photochem. Photobiol., 93, 1-22, https://doi.org/10.1111/php.12676.

    Article  CAS  Google Scholar 

  44. Zhang, M., Wang, L., and Zhong, D. (2017) Photolyase: dynamics and electron-transfer mechanisms of DNA repair, Arch. Biochem. Biophys., 632, 158-174, https://doi.org/10.1016/j.abb.2017.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bayram, O., Braus, G. H., Fischer, R., and Rodriguez-Romero, J. (2010) Spotlight on Aspergillus nidulands photosensory systems, Fungal Genet. Biol., 47, 900-908, https://doi.org/10.1016/j.fgb.2010.05.008.

    Article  CAS  PubMed  Google Scholar 

  46. Konig, S., Juhas, M., Jager, S., Kottke, T., and Buchel, C. (2017) The cryptochrome-photolyase protein family in diatoms, J. Plant Physiol., 217, 15-19, https://doi.org/10.1016/j.plph.2017.06.015.

    Article  PubMed  Google Scholar 

  47. Kottke, T., Oldemeyer, S., Wenzel, S., Zou, Y., and Mittag, M. (2017) Cryptochrome photoreceptors in green algae: unexpected versatility of mechanisms and functions, J. Plant Physiol., 217, 4-14, https://doi.org/10.1016/j.plph.2017.05.021.

    Article  CAS  PubMed  Google Scholar 

  48. Michael, A. K., Fribourgh, J. L., Van Gelder, R. N., and Partch, C. L. (2017) Animal cryptochromes: divergent roles in light perception, circadian timekeeping and beyond, Photochem. Photobiol., 93, 128-140, https://doi.org/10.1111/php.12677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oldemeyer, S., Franz, S., Wenzel, S., Essen, L.-O., Mittag, M., and Kottke, T. (2016) Essential role of an unusual long-lived tyrosil radical in the response to red light of the animal-like cryptochrome aCRY, J. Biol. Chem., 291, 14062-14071, https://doi.org/10.1074/jbc.M116.726976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Paulus, B., Bajzath, C., Melin, F., Heidinger, L., Kromm, V., Herkersdorf, C., Benz, U., Mann, L., Stehle, P., Hellwig, P., Weber, S., and Schleicher, E. (2015) Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome – protonated and nonprotonated flavin radical-states, FEBS J., 282, 3175-3189, https://doi.org/10.1111/febs.13299.

    Article  CAS  PubMed  Google Scholar 

  51. Zoltowski, B. D., Vaidya, A. T., Top, D., Widom, J., Young, M. W., and Crane, B. R. (2011) Structure of full-length Drosophila cryptochrome, Nature, 480, 396-399, https://doi.org/10.1038/nature10618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sancar, A. (2008) Structure and function of photolyase and in vivo enzymology: 50th anniversary, J. Biol. Chem., 283, 32153-32157, https://doi.org/10.1074/jbc.R800052200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Franz, S., Ignatz, E., Wenzel, S., Zielosko, H., Putu, E., Maestre-Reyna, M., Tsai, M.-D., Yamomoto, J., Mittag, M., and Essen, L.-O. (2018) Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii, Nucleic Acids Res., 46, 8010-8022, https://doi.org/10.1093/nar/gky621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hense, A., Herman, E., Oldemeyer, S., and Kottke, T. (2015) Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome, J. Biol. Chem., 290, 1743-1751, https://doi.org/10.1074/jbc.M114.606327.

    Article  CAS  PubMed  Google Scholar 

  55. Lacombat, F., Espagne, A., Dozova, N., Plaza, P., Muller, P., Brettel, K., Franz-Badur, S., and Essen, L.-O. (2019) Ultrafast oxidation of a tyrosine by proton-coupled electron transfer promotes light activation of an animal-like cryptochrome, J. Am. Chem. Soc., 141, 13394-13409, https://doi.org/10.1021/jacs.9b03680.

    Article  CAS  PubMed  Google Scholar 

  56. Oldemeyer, S., Haddat, A. Z., and Fleming, G. R. (2020) Interconnection of the antenna pigment 8-HDF and flavin facilitates red-light reception in bifunctional animal-like cryptochrome, Biochemistry, 59, 594-604, https://doi.org/10.1021/acs.biochem.9b00875.

    Article  CAS  PubMed  Google Scholar 

  57. Goett-Zink, L., and Kottke, T. (2021) Plant cryptochromes illuminated: a spectroscopic perspective on the mechanism, Front. Chem., 9, 780199, https://doi.org/10.3389/fchem.2021.780199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thoing, C., Oldemeyer, S., and Kottke, T. (2015) Microsecond deprotonation of aspartic acid and response of the α/β subdomain precede C-terminal signaling in the blue light sensor plant cryptochrome, J. Am. Chem. Soc., 137, 5990-5999, https://doi.org/10.1021/jacs.5b01404.

    Article  CAS  PubMed  Google Scholar 

  59. Herbel, V., Orth, C., Wenzel, R., Ahmad, M., Bittl, R., and Batschauer, A. (2013) Lifetimes of Arabidopsis cryptochrome signaling states in vivo, Plant J., 74, 583-592, https://doi.org/10.1111/tpj.12144.

    Article  CAS  PubMed  Google Scholar 

  60. Muller, P., and Ahmad, M. (2011) Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception, J. Biol. Chem., 286, 21033-21040, https://doi.org/10.1074/jbc.M111.228940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goett-Zink, L., Toschke, A. L., Petersen, J., Mittag, M., and Kottke, T. (2021) C-terminal extension of plant cryptochrome dissociates from the β-sheet of the flavin-binding domain, J. Phys. Chem. Lett., 12, 5558-5563, https://doi.org/10.1021/acs.jpclett.1c00844.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, Q., Su, T., He, W., Ren, H., Liu, S., Chen, Y., Gao, L., Hu, X., Lu, H., Cao, S., Huang, Y., Wang, X., Wang, Q., and Lin, C. (2020) Photooligomerization determines photosensitivity and photoreactivity of plant cryptochromes, Mol. Plant., 13, 398-413, https://doi.org/10.1016/j.molp.2020.01.002.

    Article  CAS  PubMed  Google Scholar 

  63. Yang, Z., Liu, B., Su, J., Liao, J., Lin, C., and Oka, Y. (2017) Cryptochromes orchestrate transcription regulation of diverse blue light responses in plants, Photochem. Photobiol., 93, 112-127, https://doi.org/10.1111/php.12663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, Q., and Lin, C. (2020) A structural view of plant CRY2 photoactivation and inactivation, Nat. Struct. Mol. Biol., 27, 401-403, https://doi.org/10.1038/s41594-020-0432-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gao, J., Wang, X., Zhang, M., Bian, M., Deng, W., Zuo, Z., Yang, Z., Zhong, D., and Lin, C. (2015) Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1, Proc. Natl. Acad. Sci. USA, 112, 9135-9140, https://doi.org/10.1073/pnas.1504404112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, H., Su, T., He, W., Wang, G., and Lin, C. (2020) The universally conserved residues are not universally required for stable protein expression or functions of cryptochromes, Mol. Biol. Evol., 37, 327-340, https://doi.org/10.1093/molbev/msz217.

    Article  CAS  PubMed  Google Scholar 

  67. Shao, K., Zhang, X., Li, X., Hao, Y., Huang, X., Ma, M., Zhang, M., Yu, F., Liu, H., and Zhang, P. (2020) The oligomeric structures of plant cryptochromes, Nat. Struct. Mol. Biol., 27, 480-488, https://doi.org/10.1038/s41594-020-0420-x.

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Q., Zuo, Z., Wang, X., Gu, L., Koshizumi, T., Yang, Z., Yang, L., Liu, Q., Liu, W., Han, Y. J., Kim, J. I., Liu, B., Wohlschlegel, J. A., Matsui, M., Oka, Y., and Lin, C. (2016) Photoactivation and inactivation of Arabidopsis cryptochrome 2, Science, 354, 343-347, https://doi.org/10.1126/science.aaf9030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma, L., Wang, X., Guan, Z., Wang, L., Wang, Y., Zheng, L., Gong, Z., Shen, C., Wang, J., Zhang, D., Liu, Z., and Yin, P. (2020) Structural insight into BIC-mediated inactivation of Arabidopsis cryptochrome 2, Nat. Struct. Mol. Biol., 27, 472-479, https://doi.org/10.1038/s41594-020-0410-z.

    Article  CAS  PubMed  Google Scholar 

  70. Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., and Lin, C. (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis, Science, 322, 1535-1539, https://doi.org/10.1126/science.1163927.

    Article  CAS  PubMed  Google Scholar 

  71. Liu, Y., Li, X., Li, K., Lin, H., and Lin, C. (2013) Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis, PLoS Genet., 9, e1003861, https://doi.org/10.1371/journal.pgen.1003861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, Y., Li, X., Ma, D., Chen, Z., Wang, J.-W., and Liu, H. (2018) CIB and CO interact to mediate CRY2-dependent regulation of flowering, EMBO Rep., 19, e45762, https://doi.org/10.15252/embr.2018.45762.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ma, D., Li, X., Guo, Y., Chu, J., Fang, S., Yan, C., Noel, J. P., and Liu, H. (2016) Cryptochrome 1 interacts with PIFs to regulate high temperature-mediated hypocotyl elongation in response to blue light, Proc. Natl. Acad. Sci. USA, 113, 224-229, https://doi.org/10.1073/pnas.1511437113.

    Article  CAS  PubMed  Google Scholar 

  74. Pedmale, U. V., Huang, S. C., Zander, M., Cole, B. J., Herzel, J., Nery, J. R., and Ecker, J. R. (2016) Cryptochromes interact directly with PIFs to control plant growth in limiting blue light, Cell, 164, 233-245, https://doi.org/10.1016/j.cell.2015.12.018.

    Article  CAS  PubMed  Google Scholar 

  75. Ni, W., Xu, S.-L., Gonzalez-Grandio, E., Chalkley, R. J., Huhmer, A. F. R., Burlingame, A. L., Wang, Z.-Y., and Qual, P. H. (2017) PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3, Nat. Commun., 8, 15236, https://doi.org/10.1038/ncomms15236.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Castillon, A., Shen, H., and Hug, E. (2009) Blue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings, Genetics, 182, 161-171, https://doi.org/10.1534/genetics.108.099887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shalitin, D., Yang, H., Mockler, T. C., Maymon, M., Guo, H., Whitelam, G. C., and Lin, C. (2002) Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation, Nature, 417, 763-767, https://doi.org/10.1038/nature00815.

    Article  CAS  PubMed  Google Scholar 

  78. Shalitin, D., Yu, X., Maymon, M., Mockler, T., and Lin, C. (2003) Blue-light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1, Plant Cell, 15, 2421-2429, https://doi.org/10.1105/tpc.013011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weidler, G., zur Oven-Krockhaus, S., Heunemann, M., Orth, C., Schleifenbaum, F., Harter, K., Hoecker, U., and Batschauer, A. (2012) Degradation of Arabidopsis CRY2 is regulated by SPA proteins and phytochrome A, Plant Cell, 24, 2610-2623, https://doi.org/10.1105/tpc.112.098210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu, Q., Wang, Q., Liu, B., Wang, W., Wang, X., Park, J., Yang, Z., Du, X., Bian, M., and Lin, C. (2016) The blue-light-dependent polyubiquitination and degradation of Arabidopsis cryptochrome 2 requires multiple E3 ubiquitin ligases, Plant Cell Physiol., 57, 2175-2186, https://doi.org/10.1093/pcp/pcw134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, Q., Wang, Q., Deng, W., Wang, X., Piao, M., Cai, D., Li, Y., Barshop, W.D., Yu, X., Zhou, T., Liu, B., Oka, Y., Wohlschlegel, J., Zuo, Z., and Lin, C. (2017) Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2, Nat. Commun., 8, 15234, https://doi.org/10.1038/ncomms15234.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang, H., Ma, L. G., Li, G. M., Zhao, H. Y., and Deng, X. W. (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development, Science, 294, 154-158, https://doi.org/10.1126/science.1063630.

    Article  CAS  PubMed  Google Scholar 

  83. Yang, H.-Q., Tang, R.-H., and Cashmore, A. R. (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1, Plant Cell, 13, 2573-2587, https://doi.org/10.1105/tpc.010367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ponnu, J. (2020) Molecular mechanisms suppressing COP1/SPA E3 ubiquitin ligase activity in blue light, Physiol. Plant, 169, 418-429, https://doi.org/10.1111/ppl.13103.

    Article  CAS  PubMed  Google Scholar 

  85. Heijde, M., and Ulm, R. (2012) UV-B photoreceptor-mediated signaling in plants, Trends Plant Sci., 17, 230-237, https://doi.org/10.1016/j.tplants.2012.01.007.

    Article  CAS  PubMed  Google Scholar 

  86. Hoecker, U. (2017) The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling, Curr. Opin. Plant Biol., 37, 63-69, https://doi.org/10.1016/j.pbi.2017.03.015.

    Article  CAS  PubMed  Google Scholar 

  87. Podolec, R., and Ulm, R. (2018) Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase, Curr. Opin. Plant Biol., 45, 18-25, https://doi.org/10.1016/j.pbi.2018.04.018.

    Article  CAS  PubMed  Google Scholar 

  88. Paik, I., Chen, F., Ngoc Pham, V., Zhu, L., Kim, J. I., and Hug, E. (2019) A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis, Nat. Commun., 10, 4216, https://doi.org/10.1038/s41467-019-12110-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, W., Paik, I., Kim, j., Hou, X., Sung, S., and Hug, E. (2021) Direct phosphorylation of HY5 by SPA kinases to regulate photomorphogenesis in Arabidopsis, New Phytol., 230, 2311-2326, https://doi.org/10.1111/nph.17332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ponnu, J., and Hoecker, U. (2021) Illuminating the COP1/SPA ubiquitin ligase: fresh insight into its structure and functions during plant photomorphogenesis, Front. Plant Sci., 12, 662793, https://doi.org/10.3389/fpls.2021.662793.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Balzerowicz, M., Kemer, K., Schenkel, C., and Hoecker, U. (2017) SPA proteins affect the sub-cellular localization of COP1 in the COP1/SPA ubiquitin ligase complex during photomorphogenesis, Plant Physiol., 174, 1314-1321, https://doi.org/10.1104/pp.17.00488.

    Article  CAS  Google Scholar 

  92. Kerner, K., Nagano, S., Lubbe, A., and Hoecker, U. (2021) Functional comparison of the WD-repeat domains of SPA1 and COP1 in suppression of photomorphogenesis, Plant Cell Environ., 44, 3273-3282, https://doi.org/10.1111/pce.14128.

    Article  CAS  PubMed  Google Scholar 

  93. Pacin, M., Legris, M., and Casal, J. J. (2014) Rapid decline in nuclear constitutive photomorphogenesis 1 abundance anticipates the stabilization of its target ELONGATED hypocotyl 5 in the light, Plant Physiol., 164, 1134-1138, https://doi.org/10.1104/pp.113.234245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lian, H. L., He, S. B., Zhang, Y. C., Zhu, D. M., Zhang, J. Y., Jia, K. P., San, S. X., Li, L., and Yang, H. Q. (2011) Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism, Genes Dev., 25, 1023-1028, https://doi.org/10.1101/gad.2025111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, B., Zuo, Z., Liu, H., Liu, X., and Lin, C. (2011) Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light, Genes Dev., 25, 1029-1034, https://doi.org/10.1101/gad.2025011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zuo, Z., Liu, H., Liu, B., Liu, X., and Lin, C. (2011) Blue-light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis, Curr. Biol., 21, 841-847, https://doi.org/10.1016/j.cub.2011.03.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Holtkotte, X., Ponnu, J., Ahmad, M., and Hoecker, U. (2017) The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling, PLoS Genet., 13, e1007044, https://doi.org/10.1371/journal.pgen.1007044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lau, K., Podolec, R., Chappuis, R., Ulm, R., and Hothorn, M. (2019) Plant photoreceptors and their signaling components compete for COP1 binding via VP peptide motifs, EMBO J., 38, e102140, https://doi.org/10.15252/embj.2019102140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ponnu, J., Riedel, T., Penner, E., Schrader, A., and Hoecker, U. (2019) Cryptochrome 2 competes with COP1-substrates to repress COP1 ligase activity during Arabidopsis photomorphogenesis, Proc. Natl. Acad. Sci. USA, 116, 27133-27141, https://doi.org/10.1073/pnas.1909181116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the State Budget Assignment of Lomonosov Moscow State University, project no. 121032500058-7.

Author information

Authors and Affiliations

Authors

Contributions

G.Ya.F. – conceptualization, analysis of publications, writing and editing the text; N.S.B. – manuscript and figure preparation; A.B.R. – discussion of the manuscript material with coauthors.

Corresponding author

Correspondence to Grigori Ya. Fraikin.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraikin, G.Y., Belenikina, N.S. & Rubin, A.B. Molecular Bases of Signaling Processes Regulated by Cryptochrome Sensory Photoreceptors in Plants. Biochemistry Moscow 88, 770–782 (2023). https://doi.org/10.1134/S0006297923060056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923060056

Keywords

Navigation