Skip to main content
Log in

Biochemical Basis of Selective Accumulation and Targeted Delivery of Photosensitizers to Tumor Tissues

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The method of photodynamic therapy for treatment of malignant neoplasms is based on the selective of accumulation of photosensitizers in the tumor tissue. Insufficient selectivity of photosensitizers in relation to pathologically altered tissues and generalized distribution throughout the body leads to the development of severe toxic effects, including skin phototoxicity. The mechanisms underlying selectivity of photosensitizers for tumor tissue include selective binding to blood proteins and lipoproteins (considering that the number of receptors for those is increased on tumor cell membranes), uptake by macrophages, better solubility at low pH (acidic pH is characteristic of tumor cells), and other mechanisms. At present, increase in the efficiency of photodynamic therapy is largely associated with the additional targeting of photosensitizers to tumor tissues. Targeted delivery strategies are based on the differences in metabolism and gene expression profiles between the tumor and healthy cells. There are differences in expression of receptors, proteases, or transmembrane transporters in these cells. In particular, accelerated metabolism in many types of tumors leads to overexpression of receptors for epidermal growth factor, folic acid, transferrin, and a number of other compounds. This review considers biochemical basis for the selective accumulation of various classes of photosensitizers in tumors (chlorins, phthalocyanines, 5-aminolevulinic acid derivatives, etc.) and discusses various strategies of targeted delivery with emphasis on conjugation of photosensitizers with the receptor ligands overexpressed in tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

5-ALA:

5-aminolevulinic acid

AB:

antibody

AlPc:

aluminum phthalocyanine

AlPcS4:

aluminum phthalocyanine tetrasulfonate

E2:

estradiol

Chl:

chlorin e6

Cur:

curcumin

DME-Chl:

chlorin e6 dimethyl ester

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

FA:

folic acid

G:

glucose

HDL:

high-density lipoproteins

Hy:

hypericin

IC50 :

half maximal inhibitory concentration

LDL:

low-density lipoproteins

LpS:

liposome

BPD-MA:

benzoporphyrin derivative

M:

mannose

NP:

nanoparticle

P:

peptide

Pyro-Pheo:

pyropheophorbide A

PPIX:

protoporphyrin IX

PEG:

polyethylene glycol

Tmf:

tamoxifen

Tf:

transferrin

Tf(P):

peptide binding to transferrin receptors

PDT:

photodynamic therapy

PheoA:

pheophorbide A

Pc:

phthalocyanine

SiPc:

silicon phthalocyanine

Vir:

virosome

ZnPc:

zinc phthalocyanine

References

  1. Schneider, R., Tirand, L., Frochot, C., Vanderesse, R., Thomas, N., et al. (2006) Recent improvements in the use of synthetic peptides for a selective photodynamic therapy, Curr. Med. Chem. Anti Cancer Agents, 6, 469-488, https://doi.org/10.2174/187152006778226503.

    Article  CAS  Google Scholar 

  2. Ulfo, L., Costantini, P. E., Di Giosia, M., Danielli, A., and Calvaresi, M. (2022) EGFR-targeted photodynamic therapy, Pharmaceutics, 14, 241, https://doi.org/10.3390/pharmaceutics14020241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schmitt, F., and Juillerat-Jeanneret, L. (2012) Drug targeting strategies for photodynamic therapy, Anticancer Agents Med Chem., 12, 500-525, https://doi.org/10.2174/187152012800617830.

    Article  CAS  PubMed  Google Scholar 

  4. Sharma, S., Jajoo, A., and Dube, A. (2007) 5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines, J. Photochem. Photobiol. B, 88, 156-162, https://doi.org/10.1016/j.jphotobiol.2007.07.005.

    Article  CAS  PubMed  Google Scholar 

  5. Castano, A. P., Demidova, T. N., and Hamblin, M. R. (2004) Mechanisms in photodynamic therapy: part one – photosensitizers, photochemistry and cellular localization, Photodiag. Photodynam. Ther., 1, 279-293, https://doi.org/10.1016/S1572-1000(05)00007-4.

    Article  CAS  Google Scholar 

  6. Chilakamarthi, U., and Giribabu, L. (2017) Photodynamic therapy: past, present and future, Chem. Rec., 17, 775-802, https://doi.org/10.1002/tcr.201600121.

    Article  CAS  PubMed  Google Scholar 

  7. Filonenko, E. V., and Serova, L. G. (2016) Photodynamic therapy in clinical practice, Biomed. Photonics, 5, 26-37.

    Google Scholar 

  8. Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., et al. (2018) Photodynamic therapy – mechanisms, photosensitizers and combinations, Biomed. Pharmacother., 106, 1098-1107, https://doi.org/10.1016/j.biopha.2018.07.049.

    Article  CAS  PubMed  Google Scholar 

  9. Juzeniene, A., and Moan, J. (2007) The history of PDT in Norway/Part one: identification of basic mechanisms of general PDT, Photodiag. Photodynam. Ther., 4, 3-11, https://doi.org/10.1016/j.pdpdt.2006.11.002.

    Article  CAS  Google Scholar 

  10. Machinskaya, E. A., and Ivanova-Radkevich, V. I (2013) Review of the mechanisms of selective accumulation of photosensitizers with different chemical structure in tumor tissues, Photodyn. Ther. Photodiagn., 2, 28-32.

    Google Scholar 

  11. Maziere, J. C., Morliere, P., and Santus, R. (1991) The role of the low density lipoprotein receptor pathway in the delivery of lipophilic photosensitizers in the photodynamic therapy of tumours, J. Photochem. Photobiol. B Biol., 8, 351-360, https://doi.org/10.1016/1011-1344(91)80111-t.

    Article  CAS  Google Scholar 

  12. Niamien Konan, Y., Gurny, R., and Allemann, E. (2002) State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol. B Biol., 66, 89-106, https://doi.org/10.1016/s1011-1344(01)00267-6.

    Article  Google Scholar 

  13. Jones, H. J., Vernon, D. I., and Brown, S. B. (2003) Photodynamic therapy effect of m-THPC (Foscan) in vivo: correlation with pharmacokinetics, Br. J. Cancer, 89, 398-404, https://doi.org/10.1038/sj.bjc.6601101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moan, J., and Berg, K. (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol., 53, 549-553, https://doi.org/10.1111/j.1751-1097.1991.tb03669.x.

    Article  CAS  PubMed  Google Scholar 

  15. Lukyanets, E. A. (1999) Phthalocyanines as photosensitizers in the photodynamic therapy of cancer, J. Porphyrins Phthalocyanines, 3, 424-432, https://doi.org/10.1002/(SICI)1099-1409(199908/10)3:6/7<424::AID-JPP151>3.0.CO;2-K.

    Article  CAS  Google Scholar 

  16. Zheng, G., Li, H., Zhang, M., Lund-Katz, S., Chance, B., et al. (2002) Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target specific photosensizer, Bioconj. Chem., 13, 392-396, https://doi.org/10.1021/bc025516h.

    Article  CAS  Google Scholar 

  17. Nowis, D., Makowski, M., Stokłosa, T., Legat, M., Issat, T., et al. (2005) Direct tumor damage mechanisms of photodynamic therapy, Acta Biochim. Pol., 52, 339-352.

    Article  CAS  PubMed  Google Scholar 

  18. Tang, Y., Liu, Y., Wang, S., Tian, Y., Li, Y., et al. (2019) Depletion of collagen by losartan to improve tumor accumulation and therapeutic efficacy of photodynamic nanoplatforms, Drug Deliv. Transl. Res., 9, 615-624, https://doi.org/10.1007/s13346-018-00610-1.

    Article  CAS  PubMed  Google Scholar 

  19. Moan, J., and Peng, Q. (2003) An outline of the history of PDT, in Photodynamic Therapy. Comprehensive series in Photochem. Photobiol. Sci. (Patrice, T., ed.) The Royal Society of Chemistry, London, pp. 3-17.

  20. Pottier, R., and Kennedy, J. C. (1990) The possible role of ionic species in selective biodistribution of photochemotherapeutic agents toward neoplastic tissue, J. Photochem. Photobiol. B Biol., 8, 1-16, https://doi.org/10.1016/1011-1344(90)85183-w.

    Article  CAS  Google Scholar 

  21. Solban, N., Rizvi, I., and Hasan, T. (2006) Targeted photodynamic therapy, Lasers Surg. Med., 38, 522-531, https://doi.org/10.1002/lsm.20345.

    Article  PubMed  Google Scholar 

  22. Wiedmann, M. W., and Caca, K. (2004) General principles of photodynamic therapy (PDT) and gastrointestinal applications, Curr. Pharmaceut. Biotechnol., 5, 397-408, https://doi.org/10.2174/1389201043376805.

    Article  CAS  Google Scholar 

  23. Dougherty, T. J., Potter, W. R., and Weishaupt, K. R. (1984) Porphyrin Localization and Treatment of Tumors (Liss, A. R., ed) pp. 301-314.

  24. Filonenko, E. V., Kaprin, A. D., Alekseev, B. Ya., Apolikhin, O. I., Slovokhodov, E. K., et al. (2016) 5-aminolevulinic acid in intraoperative photodynamic therapy of bladder cancer (results of multicenter trial), Photodiagnosis Photodyn. Ther., 16, 106-109, https://doi.org/10.1016/j.pdpdt.2016.09.009.

    Article  CAS  PubMed  Google Scholar 

  25. Filonenko, E., Kaprin, A., Urlova, A., Grigorievykh, N., and Ivanova-Radkevich, V. (2020) Topical 5-aminolevulinic acid-mediated photodynamic therapy for basal cell carcinoma, Photodiagnosis Photodyn. Ther., 30, 101644, https://doi.org/10.1016/j.pdpdt.2019.101644.

    Article  CAS  PubMed  Google Scholar 

  26. Kloek, J., Akkermans, W., and Beijersbergen van Henegouwen, G. M. (1998) Derivatives of 5-aminolevulinic acid for photodynamic therapy: enzymatic conversion into protoporphyrin, Photochem. Photobiol., 67, 150-154, https://doi.org/10.1111/j.1751-1097.1998.tb05178.x.

    Article  CAS  PubMed  Google Scholar 

  27. Kaprin, A. D., Trushin, A. A., Golovashchenko, M. P., Ivanova-Radkevich, V. I., and Chissov, V. I. (2019) Improving the efficiency of bladder cancer diagnostic cystoscopy with 5-ALA hexyl ester, Biomed. Photonics, 8, 29-37, https://doi.org/10.24931/2413-9432-2019-8-1-29-37.

    Article  Google Scholar 

  28. Yakubovskaya, R. I., Pankratov, A. A., Filonenko, E. V., Lukyanets, E. A., Ivanova-Radkevich, V. I., et al. (2018) Comparative experimental study of 5-ALA and 5-ALA hexyl ester specific activity, Biomed. Photonics, 7, 43-46, https://doi.org/10.24931/2413-9432-2018-7-3-43-46.

    Article  Google Scholar 

  29. Lopez, R. F., Lange, N., Guy, R., and Bentley, M. V. (2004) Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters, Adv. Drug. Deliv. Rev., 56, 77-94, https://doi.org/10.1016/j.addr.2003.09.002.

    Article  CAS  PubMed  Google Scholar 

  30. Malik, Z., Kostenich, G., Roitman, L., Ehrenberg, B., and Orenstein, A. (1995) Topical application of 5-aminolevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumours of mice, J. Photochem. Photobiol. B Biol., 28, 213-218, https://doi.org/10.1016/1011-1344(95)07117-k.

    Article  CAS  Google Scholar 

  31. Fukuda, H., Paredes, S., and Batlle, A. M. (1992) Tumour-localizing properties of porphyrins. In vivo studies using free and liposome encapsulated aminolevulinic acid, Comp. Biochem. Physiol. B, 102, 433-436, https://doi.org/10.1016/0305-0491(92)90147-j.

    Article  CAS  PubMed  Google Scholar 

  32. Peng, Q., Warloe, T., Moan, J., Heyerdahl, H., Steen, H. B., et al. (1995) Distribution of 5-aminolevulinic acid-induced porphyrins in noduloulcerative basal cell carcinoma, Photochem. Photobiol., 62, 906-913, https://doi.org/10.1111/j.1751-1097.1995.tb09154.x.

    Article  CAS  PubMed  Google Scholar 

  33. Kloek, J., and Beijersbergen van Henegouwen, G. M. (1996) Prodrugs of 5-aminolevulinic acid for photodynamic therapy, Photochem. Photobiol., 64, 994-1000, https://doi.org/10.1111/j.1751-1097.1996.tb01868.x.

    Article  CAS  PubMed  Google Scholar 

  34. Filonenko, E. V., Kaprin, A. D., Alekseev, B. Ya., Ivanova-Radkevich, V. I., Slovokhodov, E. K., et al. (2017) Fluorescence diagnosis of bladder cancer with agent Hexasens – the results of multicenter trial, Biomedical Photonics, 6, 20-27, https://doi.org/10.24931/2413-9432-2017-6-1-20-27.

    Article  Google Scholar 

  35. Slovokhodov, E. K., Ivanova-Radkevich, V. I., and Brodsky, I. B. (2017) Fluorescent diagnosis of bladder cancer by hexasens as a drug, J. Biol. Today’s World, 6, 123-128, https://doi.org/10.15412/J.JBTW.01060701.

    Article  Google Scholar 

  36. Ivanova-Radkevich, V. I., Smirnova, I. P., Kuznetsova, O. M., Lobaeva, T. A., Gushchina, Yu. Sh., et al. (2016) Organization of clinical trials of photosensitizer based on 5-aminolevulinic acid hexyl ester, Ind. J. Sci. Technol., 9, 1-7, https://doi.org/10.17485/ijst/2016/v9i18/93759.

    Article  CAS  Google Scholar 

  37. Shen, Y., Li, X., Dong, D., Zhang, B., Xue, Y., and Shang, P. (2018) Transferrin receptor 1 in cancer: a new sight for cancer therapy, Am. J. Cancer Res., 8, 916-931.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cavanaugh, P. G. (2002) Synthesis of chlorin e6-transferrin and demonstration of its light-dependent in vitro breast cancer cell killing ability, Breast Cancer Res. Treat., 72, 117-130, https://doi.org/10.1023/a:1014811915564.

    Article  CAS  PubMed  Google Scholar 

  39. Gijsens, A., Derycke, A. S., Missiaen, L., De Vos, D., Huwyler, J., et al. (2002) Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferrin conjugated PEG-liposomes, Int. J. Cancer, 101, 78-85, https://doi.org/10.1002/ijc.10548.

    Article  CAS  PubMed  Google Scholar 

  40. Derycke, A. S., Kamuhabwa, A., Gijsens, A., Roskams, T., De Vos, D., et al. (2004) Transferrin-conjugated liposome targeting of photosensitizer AlPcS4 to rat bladder carcinoma cells, J. Natl. Cancer Inst., 96, 1620-1630, https://doi.org/10.1093/jnci/djh314.

    Article  CAS  PubMed  Google Scholar 

  41. Jadia, R., Kydd, J., and Rai, P. (2018) Remotely phototriggered, transferrin-targeted polymeric nanoparticles for the treatment of breast cancer, Photochem. Photobiol., 94, 765-774, https://doi.org/10.1111/php.12903.

    Article  CAS  PubMed  Google Scholar 

  42. Hamblin, M. R., and Newman, E. L. (1994) Photosensitizer targeting in photodynamic therapy. I. Conjugates of haematoporphyrin with albumin and transferrin, J. Photochem. Photobiol. B Biol., 26, 45-56, https://doi.org/10.1016/1011-1344(94)85035-6.

    Article  CAS  Google Scholar 

  43. Sardoiwala, M. N., Kushwaha, A. C., Dev, A., Shrimali, N., Guchhait, P., et al. (2020) Hypericin-loaded transferrin nanoparticles induce PP2A-regulated BMI1 degradation in colorectal cancer-specific chemo-photodynamic therapy, ACS Biomater. Sci. Eng., 6, 3139-3153, https://doi.org/10.1021/acsbiomaterials.9b01844.

    Article  CAS  PubMed  Google Scholar 

  44. Schneider, R., Schmitt, F., Frochot, C., Fort, Y., Lourette, N., et al. (2005) Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy, Bioorg. Med. Chem., 13, 2799-2808, https://doi.org/10.1016/j.bmc.2005.02.025.

    Article  CAS  PubMed  Google Scholar 

  45. Gravier, J., Schneider, R., Frochot, C., Bastogne, T., Schmitt, F., et al. (2008) Improvement of meta-tetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. Synthesis and in vivo delivery studies, J. Med. Chem., 51, 3867-3877, https://doi.org/10.1021/jm800125a.

    Article  CAS  PubMed  Google Scholar 

  46. Nwahara, N., Abrahams, G., Prinsloo, E., and Nyokong, T. (2021) Folic acid-modified phthalocyanine-nanozyme loaded liposomes for targeted photodynamic therapy, Photodiagnosis Photodyn. Ther., 36, 102527, https://doi.org/10.1016/j.pdpdt.2021.102527.

    Article  CAS  PubMed  Google Scholar 

  47. Liang, X., Xie, Y., Wu, J., Wang, J., Petković, M., et al. (2021) Functional titanium dioxide nanoparticle conjugated with phthalocyanine and folic acid as a promising photosensitizer for targeted photodynamic therapy in vitro and in vivo, J. Photochem. Photobiol. B, 215, 112122, https://doi.org/10.1016/j.jphotobiol.2020.112122.

    Article  CAS  PubMed  Google Scholar 

  48. Akbarzadeh, F., Khoshgard, K., Arkan, E., Hosseinzadeh, L., and Hemati Azandaryani, A. (2018) Evaluating the photodynamic therapy efficacy using 5-aminolevulinic acid and folic acid-conjugated bismuth oxide nanoparticles on human nasopharyngeal carcinoma cell line, Artif. Cells Nanomed. Biotechnol., 46, 514-523, https://doi.org/10.1080/21691401.2018.1501376.

    Article  CAS  Google Scholar 

  49. Hwang, J. W., Jung, S. J., Cheong, T. C., Kim, Y., Shin, E. P., et al. (2019) Smart hybrid nanocomposite for photodynamic inactivation of cancer cells with selectivity, J. Phys. Chem. B, 123, 6776-6783, https://doi.org/10.1021/acs.jpcb.9b04301.

    Article  CAS  PubMed  Google Scholar 

  50. Son, J., Yang, S. M., Yi, G., Roh, Y. J., Park, H., et al. (2018) Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo, Biochem. Biophys. Res. Commun., 498, 523-528, https://doi.org/10.1016/j.bbrc.2018.03.013.

    Article  CAS  PubMed  Google Scholar 

  51. Bharathiraja, S., Moorthy, M. S., Manivasagan, P., Seo, H., Lee, K. D., et al. (2017) Chlorin e6 conjugated silica nanoparticles for targeted and effective photodynamic therapy, Photodiagnosis Photodyn. Ther., 19, 212-220, https://doi.org/10.1016/j.pdpdt.2017.06.001.

    Article  CAS  PubMed  Google Scholar 

  52. Hilgenbrink, A. R., and Low, P. S. (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics, J. Pharm. Sci., 94, 2135-2146, https://doi.org/10.1002/jps.20457.

    Article  CAS  PubMed  Google Scholar 

  53. Scaranti, M., Cojocaru, E., Banerjee, S., and Banerji, U. (2020) Exploiting the folate receptor α in oncology, Nat. Rev. Clin. Oncol., 17, 349-359, https://doi.org/10.1038/s41571-020-0339-5.

    Article  PubMed  Google Scholar 

  54. Juillerat-Jeanneret, L., and Schmitt, F. (2007) Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the Grail, Med. Res. Rev., 27, 574-590, https://doi.org/10.1002/med.20086.

    Article  CAS  PubMed  Google Scholar 

  55. Pan, X., Xie, J., Li, Z., Chen, M., Wang, M., et al. (2015) Enhancement of the photokilling effect of aluminum phthalocyanine in photodynamic therapy by conjugating with nitrogen-doped TiO2 nanoparticles, Colloids Surf. B Biointerfaces, 130, 292-298, https://doi.org/10.1016/j.colsurfb.2015.04.028.

    Article  CAS  PubMed  Google Scholar 

  56. Yang, S. W., Jeong, Y. I., Kook, M. S., and Kim, B. H. (2022) Reactive oxygen species and folate receptor-targeted nanophotosensitizers composed of folic acid-conjugated and poly(ethylene glycol)-chlorin e6 tetramer having diselenide linkages for targeted photodynamic treatment of cancer cells, Int. J. Mol. Sci., 23, 3117, https://doi.org/10.3390/ijms23063117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Salomon, D. S., Brandt, R., Ciardiello, F., and Normanno, N. (1995) Epidermal growth factor-related peptides and their receptors in human malignancies, Crit. Rev. Oncol. Hematol., 19, 183-232, https://doi.org/10.1016/1040-8428(94)00144-i.

    Article  CAS  PubMed  Google Scholar 

  58. Vieira, A. V., Lamaze, C., and Schmid, S. L. (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis, Science, 274, 2086-2089, https://doi.org/10.1126/science.274.5295.2086.

    Article  CAS  PubMed  Google Scholar 

  59. Lutsenko, S. V., Feldman, N. B., Finakova, G. V., Posypanova, G. A., Severin, S. E., et al. (1999) Targeting phthalocyanines to tumor cells using epidermal growth factor conjugates, Tumor Biol., 20, 218-224, https://doi.org/10.1159/000030066.

    Article  CAS  Google Scholar 

  60. Gijsens, A., Missiaen, L., Merlevede, W., and De Witte, P. (2000) Epidermal growth factor-mediated targeting of chlorin e6 selectively potentiates its photodynamic activity, Cancer Res., 60, 2197-2202.

    CAS  PubMed  Google Scholar 

  61. Castilho, M. L., Jesus, V. P. S., Vieira, P. F. A., Hewitt, K. C., and Raniero, L. (2021) Chlorin e6–EGF conjugated gold nanoparticles as a nanomedicine based therapeutic agent for triple negative breast cancer, Photodiagnosis Photodyn. Ther., 33, 102186, https://doi.org/10.1016/j.pdpdt.2021.102186.

    Article  CAS  PubMed  Google Scholar 

  62. Tsai, W.-H., Yu, K.-H., Huang, Y.-C., and Lee, C.-I. (2018) EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles, Int. J. Nanomed., 13, 903-916, https://doi.org/10.2147/IJN.S148305.

    Article  CAS  Google Scholar 

  63. Liu, Q., Pang, M., Tan, S., Wang, J., Chen, Q., et al. (2018) Potent peptide-conjugated silicon phthalocyanines for tumor photodynamic therapy, J. Cancer, 9, 310-320, https://doi.org/10.7150/jca.22362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, J., Lin, Y., Li, H., Jin, Q., and Ji, J. (2017) Zwitterionic stealth peptide-capped 5-aminolevulinic acid prodrug nanoparticles for targeted photodynamic therapy, J. Colloid Interf. Sci., 485, 251-259, https://doi.org/10.1016/j.jcis.2016.09.012.

    Article  CAS  Google Scholar 

  65. Kamarulzaman, E. E., Gazzali, A. M., Acherar, S., Frochot, C., Barberi-Heyob, M., et al. (2015) New peptide-conjugated chlorin-type photosensitizer targeting neuropilin-1 for anti-vascular targeted photodynamic therapy, Int. J. Mol. Sci., 16, 24059-24080, https://doi.org/10.3390/ijms161024059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thomas, N., Bechet, D., Becuwe, P., Tirand, L., Vanderesse, R., et al. (2009) Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo, J. Photochem. Photobiol. B, 96, 101-108, https://doi.org/10.1016/j.jphotobiol.2009.04.008.

    Article  CAS  PubMed  Google Scholar 

  67. Yan, S., Tang, D., Hong, Z., Wang, J., Yao, H., et al. (2021) CD133 peptide–conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells, Biomater. Sci., 9, 2020-2031, https://doi.org/10.1039/d0bm01874k.

    Article  CAS  PubMed  Google Scholar 

  68. El-Akra, N., Noirot, A., Faye, J. C., and Souchard, J. P. (2006) Synthesis of estradiol–pheophorbide a conjugates: evidence of nuclear targeting, DNA damage and improved photodynamic activity in human breast cancer and vascular endothelial cells, Photochem. Photobiol. Sci., 5, 996-999, https://doi.org/10.1039/b606117f.

    Article  CAS  PubMed  Google Scholar 

  69. Swamy, N., Purohit, A., Fernandez-Gacio, A., Jones, G. B., and Ray, R. (2006) Nuclear estrogen receptor targeted photodynamic therapy: selective uptake and killing of MCF-7 breast cancer cells by a C17alpha–alkynylestradiol–porphyrin conjugate, J. Cell. Biochem., 99, 966-977, https://doi.org/10.1002/jcb.20955.

    Article  CAS  PubMed  Google Scholar 

  70. Khan, E. H., Ali, H., Tian, H., Rousseau, J., Tessier, G., et al. (2003) Synthesis and biological activities of phthalocyanine–estradiol conjugates, Bioorg. Med. Chem. Lett., 13, 1287-1290, https://doi.org/10.1016/s0960-894x(03)00120-3.

    Article  CAS  PubMed  Google Scholar 

  71. Fernandez-Gacio, A., Fernandez-Marcos, C., Swamy, N., Dunn, D., and Ray, R. (2006) Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen–pyropheophorbide conjugate, J. Cell. Biochem., 99, 665-670, https://doi.org/10.1002/jcb.20932.

    Article  CAS  PubMed  Google Scholar 

  72. Iqbal, J., Ginsburg, O. M., Wijeratne, T. D., Howell, A., Evans, G., et al. (2012) Endometrial cancer and venous thromboembolism in women under age 50 who take tamoxifen for prevention of breast cancer: a systematic review, Cancer Treat. Rev., 38, 318-328, https://doi.org/10.1016/j.ctrv.2011.06.009.

    Article  CAS  PubMed  Google Scholar 

  73. Dong, C., and Chen, L. (2014) Second malignancies after breast cancer: the impact of adjuvant therapy, Mol. Clin. Oncol., 2, 331-336, https://doi.org/10.3892/mco.2014.250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Díaz, M., Lobo, F., Hernández, D., Amesty, Á., Valdés-Baizabal, C., et al. (2021) FLTX2: a novel tamoxifen derivative endowed with antiestrogenic, fluorescent, and photosensitizer properties, Int. J. Mol. Sci., 22, 5339, https://doi.org/10.3390/ijms22105339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pawar, S., Koneru, T., McCord, E., Tatiparti, K., Sau, S., et al. (2021) LDL receptors and their role in targeted therapy for glioma: a review, Drug Discov. Today, 26, 1212-1225, https://doi.org/10.1016/j.drudis.2021.02.008.

    Article  CAS  PubMed  Google Scholar 

  76. Floeth, M., Elges, S., Gerss, J., Schwöppe, C., Kessler, T., et al. (2021) Low-density lipoprotein receptor (LDLR) is an independent adverse prognostic factor in acute myeloid leukaemia, Br. J. Haematol., 192, 494-503, https://doi.org/10.1111/bjh.16853.

    Article  CAS  PubMed  Google Scholar 

  77. Jori, G., and Reddi, E. (1993) The role of lipoproteins in the delivery of tumour-targeting photosensitizers, Int. J. Biochem., 25, 1369-1375, https://doi.org/10.1016/0020-711x(93)90684-7.

    Article  CAS  PubMed  Google Scholar 

  78. Zhou, C., Milanesi, C., and Jori, G. (1988) An ultrastructural comparative evaluation of tumors photosensitized by porphyrins administered in aqueous solution, bound to liposomes or to lipoproteins, Photochem. Photobiol., 48, 487-492, https://doi.org/10.1111/j.1751-1097.1988.tb02850.x.

    Article  CAS  PubMed  Google Scholar 

  79. Hamblin, M. R., and Newman, E. L. (1994) Photosensitizer targeting in photodynamic therapy. II. Conjugates of haematoporphyrin with serum lipoproteins, J. Photochem. Photobiol., 26, 147-157, https://doi.org/10.1016/1011-1344(94)07036-9.

    Article  CAS  Google Scholar 

  80. Polo, L., Valduga, G., Jori, G., and Reddi, E. (2002) Low-density lipoprotein receptors in the uptake of tumour photosensitizers by human and rat transformed fibroblasts, Int. J. Biochem. Cell Biol., 34, 10-23, https://doi.org/10.1016/s1357-2725(01)00092-9.

    Article  CAS  PubMed  Google Scholar 

  81. Song, L., Li, H., Sunar, U., Chen, J., Corbin, I., et al. (2007) Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment, Int. J. Nanomedicine, 2, 767-774.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, C., Zhao, X., Jiang, H., Wang, J., Zhong, W., et al. (2021) Transporting mitochondrion-targeting photosensitizers into cancer cells by low-density lipoproteins for fluorescence-feedback photodynamic therapy, Nanoscale, 13, 1195-1205, https://doi.org/10.1039/d0nr07342c.

    Article  CAS  PubMed  Google Scholar 

  83. Cao, W., Ng, K. K., Corbin, I., Zhang, Z., Ding, L., et al. (2009) Synthesis and evaluation of a stable bacteriochlorophyll-analog and its incorporation into high-density lipoprotein nanoparticles for tumor imaging, Bioconjug. Chem., 20, 2023-2031, https://doi.org/10.1021/bc900404y.

    Article  CAS  PubMed  Google Scholar 

  84. Fujita, M., Lee, B. -S., Khazenzon, N. M., Penichet, M. L., Wawrowsky, K. A., et al. (2007) Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(β-L-malic acid), J. Control Release, 122, 356-363, https://doi.org/10.1016/j.jconrel.2007.05.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Savellano, P., and Hasan, T. (2005) Photochemical targeting of epidermal growth factor receptor: a mechanistic study, Clin. Cancer Res., 11, 1658-1668, https://doi.org/10.1158/1078-0432.CCR-04-1902.

    Article  CAS  PubMed  Google Scholar 

  86. Low, K. P., Bhuvaneswari, R., Thong, P. S., Bunte, R. M., and Soo, K. C. (2016) Novel delivery of Chlorin e6 using anti-EGFR antibody tagged virosomes for fluorescence diagnosis of oral cancer in a hamster cheek pouch model, Eur. J. Pharm. Sci., 83, 143-154, https://doi.org/10.1016/j.ejps.2015.12.023.

    Article  CAS  PubMed  Google Scholar 

  87. Nishie, H., Kataoka, H., Yano, S., Yamaguchi, H., Nomoto, A., et al. (2018) Excellent anti-tumor effects for gastrointestinal cancers using photodynamic therapy with a novel glucose conjugated chlorin e6, Biochem. Biophys. Res. Commun., 496, 1204-1209, https://doi.org/10.1016/j.bbrc.2018.01.171.

    Article  CAS  PubMed  Google Scholar 

  88. Osaki, T., Hibino, S., Yokoe, I., Yamaguchi, H., Nomoto, A., et al. (2019) A basic study of photodynamic therapy with glucose-conjugated chlorin e6 using mammary carcinoma xenografts, Cancers (Basel), 11, 636, https://doi.org/10.3390/cancers11050636.

    Article  CAS  Google Scholar 

  89. Desroches, M. C., Kasselouri, A., Meyniel, M., Fontaine, P., Goldmann, M., et al. (2004) Incorporation of glycoconjugated porphyrin derivatives into phospholipid monolayers: a screening method for the evaluation of their interaction with a cell membrane, Langmuir, 20, 11698-11705, https://doi.org/10.1021/la0482610.

    Article  CAS  PubMed  Google Scholar 

  90. Bautista-Sanchez, A., Kasselouri, A., Desroches, M. C., Blais, J., Maillard, P., et al. (2005) Photophysical properties of glucoconjugated chlorins and porphyrins and their associations with cyclodextrins, J. Photochem. Photobiol. B Biol., 81, 154-162, https://doi.org/10.1016/j.jphotobiol.2005.05.013.

    Article  CAS  Google Scholar 

  91. Soyama, T., Sakuragi, A., Oishi, D., Kimura, Y., Aoki, H., et al. (2021) Photodynamic therapy exploiting the anti-tumor activity of mannose-conjugated chlorin e6 reduced M2-like tumor-associated macrophages, Transl. Oncol., 14, 101005, https://doi.org/10.1016/j.tranon.2020.101005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika I. Ivanova-Radkevich.

Ethics declarations

The author declares no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova-Radkevich, V.I. Biochemical Basis of Selective Accumulation and Targeted Delivery of Photosensitizers to Tumor Tissues. Biochemistry Moscow 87, 1226–1242 (2022). https://doi.org/10.1134/S0006297922110025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922110025

Keywords

Navigation