Skip to main content
Log in

Activation of Cellular Cytokine Expression with Heteropoly Acids

  • NANOBIOLOGY AND GENETICS, AND OMICS TECHNOLOGIES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Correlations between the immunomodulatory properties of heteropoly acids (HPAs) and the stiffness of target cells, which depend on the content of membrane cholesterol, are established. A molecular model of the cellular activation of immunoactive cytokine (CT) genes by heteropoly acids is constructed. The specific features of the immunomodulatory properties of HPAs in relation to healthy and cancer cells (HFFs, A549, and L41 lines) are discussed. A mechanism for the formation of increased antiviral activity of HPAs against (+)ssRNA viruses is proposed. We substantiate the possibility of the increased nonspecific antiviral activity of HPAs against pandemic strains of SARS-CoV-2, inactivation of which may involve HPA-activated cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. In norm, both TNF and IFN play crucial roles in the formation of the local immune response to viral and cancer patterns. However, in the case of cancer cells, according to the data in Table 3, the roles of IFN and TNF may be different. IFN appears to exhibit a dominant effect.

  2. Inequalities (3) are consistent with the fact that the mCHOL level is increased in oncogenesis [47].

REFERENCES

  1. C. A. Dinarello, Eur. J Immunol. 37, S34 (2007). https://doi.org/10.1002/eji.200737772

    Article  CAS  Google Scholar 

  2. World Health Organization, “Classification of Omicron (B.1.1.529): SARS-CoV-2 variant of concern,” www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern

  3. P. Mlcochova, S. A. Kemp, M. S. Dhar, et al., Nature 599, 114 (2021). https://doi.org/10.1038/s41586-021-03944-y

    Article  CAS  Google Scholar 

  4. P. Dogra, J. Ruiz-Ramirez, K. Sinha, et al., ACS Pharmacol. Transl. Sci. 4, 248 (2020). https://doi.org/10.1021/acsptsci.0c00183

    Article  CAS  Google Scholar 

  5. L. V. Kordyukova and A. V. Shan’ko, Biochemistry Moscow 86, 800–817 (2021).

    Article  CAS  Google Scholar 

  6. S. S. Bobkova, A. A. Zhukov, D. N. Protsenko, et al., Vestn. Intensivn. Terap. 1, 57 (2021).

    Google Scholar 

  7. L. Lopez, P. C. Sang, Y. Tian, et al., Viruses 12, 1433 (2020). https://doi.org/10.3390/v12121433

    Article  CAS  Google Scholar 

  8. D. Blanco-Melo, B. E. Nilsson-Payant, W.-C. Liu, et al., Cell 181, 1036 (2020). https://doi.org/10.1016/j.cell.2020.04.026

    Article  CAS  Google Scholar 

  9. T. Yamase, Prog. Mol. Subcell. Biol. 54, 65 (2013). https://doi.org/10.1007/978-3-642-41004-8_4

    Article  CAS  Google Scholar 

  10. A. Bijelic, M. Aureliano, and A. Rompel, Chem. Commun. (Cambridge) 54, 1153 (2018). https://doi.org/10.1039/c7cc07549a

    Article  CAS  Google Scholar 

  11. M. B. Čolović, M. Lacković, J. Lalatović, et al., Curr. Med. Chem. 27, 27 (2020). https://doi.org/10.2174/09298673266661990827153532

    Article  Google Scholar 

  12. R. Francese, A. Civra, M. Ritta, et al., Antiviral Res. 163, 29 (2019). https://doi.org/10.1016/j.antiviral.2019.01.005

    Article  CAS  Google Scholar 

  13. Y. Qi, L. Han, Y. Qi, et al., Antiviral Res. 179, 104813 (2020). https://doi.org/10.1016/j.antiviral.2020.1048

    Article  CAS  Google Scholar 

  14. S. Shigeta, S. Mori, T. Yamase, et al., Biomed. Pharmacother. 60, 211 (2006). https://doi.org/10.1016/j.biopha.2006.023.009

    Article  CAS  Google Scholar 

  15. O. A. Lopatina, E. I. Isaeva, I. A. Suetina, et al., Nanomater. Nanostrukt. XXI Vek 7, 36 (2016).

    Google Scholar 

  16. O. A. Lopatina, O. V. Baklanova, I. A. Suetina, et al., Biol. Radioelektron. 3, 42 (2015).

    Google Scholar 

  17. I. A. Suetina, M. V. Mezentseva, E. A. Gushchina, et al., Kletochnye Kul’t. 31, 67 (2015).

    Google Scholar 

  18. S. A. Kovalevskii, A. A. Gulin, O. A. Lopatina, et al., Nanotechnol. Russ. 14, 481–488 (2019). https://doi.org/10.1134/S1995078019050082

  19. S. A. Kovalevskii, O. A. Lopatina, E. A. Gushchina, et al., Khim. Fiz. 40, 40 (2021).https://doi.org/10.1134/S1190793121060051

  20. F. I. Dalidchik, E. M. Balashov, O. V. Baklanova, et al., Nanotechnol. Russ. 17, 193–201 (2022).

    Article  CAS  Google Scholar 

  21. A. W. H. Chin, J. T. S. Chu, M. R. A. Perera, et al., Lancet Microb. 1, 10 (2020). https://doi.org/10.1016/S2666-5247(20)30003-3

    Article  Google Scholar 

  22. K.-H. Chan, S. Sridhar, R. R. Zhang, et al., J. Hosp. Infect. 106, 226 (2020). https://doi.org/10.1016/j.jhin.2020.07.009

    Article  Google Scholar 

  23. K. Dan, K. Fujinami, H. Sumitomo, et al., Appl. Sci. 10, 8246 (2020). https://doi.org/10.3390/app10228246

    Article  CAS  Google Scholar 

  24. H. Choi and E. C. Shin, Yonsei Med. J. 62, 381 (2021). https://doi.org/10.3349/ymj.2021.62.5.381

  25. X. Chen, E. Saccon, K. S. Appelberg, et al., Cell Death Discov. 7, 114 (2021). https://doi.org/10.1038/s41420-021-00487-z

    Article  CAS  Google Scholar 

  26. A. Park and A. Iwasaki, Cell Host. Microbe 27, 870 (2020). https://doi.org/10.1016/j.chom.2020.05.008

  27. K. E. Zawada, D. Wrona, R. J. Rawle, et al., Sci. Rep. 6, 29842 (2016). https://doi.org/10.1038/srep29842

    Article  CAS  Google Scholar 

  28. L. Lu, H. Zhang, D. J. Dauphars, et al., Trends Immunol. 42, 3 (2021). https://doi.org/10.1016/j.it.2020.10.012

    Article  CAS  Google Scholar 

  29. S. Suresh, Acta Biomater. 3, 413 (2007). https://doi.org/10.1016/j.actbio.2007.04.002

    Article  Google Scholar 

  30. N. Bernardes and M. A. Fialho, Int. J. Mol. Sci. 19, 3871 (2018). https://doi.org/10.3390/ijms19123871

    Article  CAS  Google Scholar 

  31. R. Omidvar, M. Tafazzoli-shadpour, M. A. Shokrgozar, et al., J. Biomech. 47, 3373 (2014). https://doi.org/10.1016/j.biomech.2014.08.002

    Article  Google Scholar 

  32. W. Xu, R. Mezencev, B. Kim, et al., PLoS ONE 7, e46609 (2012). https://doi.org/10.1371/journal.pone.0046609

    Article  CAS  Google Scholar 

  33. C. Alibert, B. Goud, J.-B. Manneville, et al., Biology Cell 109, 167 (2017). https://doi.org/10.1111/boc.201600078

    Article  Google Scholar 

  34. G. Runel, N. Lopez-Ramirez, J. Chlasta, et al., Cells 10, 887 (2021). https://doi.org/10.3390/cells10040887

    Article  CAS  Google Scholar 

  35. I. A. Nyapshaev, Candidate’s Dissertation in Physics and Mathematics (Ioffe Institute of the Russian Academy of Sciences, St. Petersburg, 2013).

  36. V. I. Chubinskii-Nadezhdin, Candidate’s Dissertation in Biology (Institute of Cytology, of the Russian Academy of Sciences, St. Petersburg, 2012).

  37. I. A. Nyapshaev, A. V. Ankudinov, A. V. Stovpyaga, et al., Tech. Phys. 57, 1430–1437 (2012).

    Article  CAS  Google Scholar 

  38. S. Raffy and J. Teissie, Biophys. J. 76, 2072 (1999). https://doi.org/10.1016/s006-3495(99)77363-7

    Article  CAS  Google Scholar 

  39. S. Bajimaya, T. Hayashi, T. Frankl, et al., Virology 501, 127 (2017). https://doi.org/10.1016/j.virol.2016.11.011

    Article  CAS  Google Scholar 

  40. I. P. Sousa, C. A. M. Carvalho, and A. M. O. Gomes, Viruses 13, 35 (2020). https://doi.org/10.3390/v13010035

    Article  CAS  Google Scholar 

  41. W. Gibson Wood, U. Igbavboa, W. E. Muller, et al., J. Neurochem. 116, 684 (2011).https://doi.org/10.1111/j.1471-4159.2010.07017.x

  42. L. De Oliveira Andrade, Biomed. Spectrosc. Imaging 5, S101 (2016). https://doi.org/10.3233/bsi160157

    Article  Google Scholar 

  43. D. Needham and R. S. Nunn, Biophys. J. 58, 997 (1990). https://doi.org/10.1016/s0006-3495(90)82444-9

    Article  CAS  Google Scholar 

  44. I. Levitan, Front. Biosci. 21, 1245 (2016). https://doi.org/10.2741/4454

    Article  Google Scholar 

  45. Z. Hong, M. C. Staiculescu, P. Hampel, et al., Front. Physiol. 3, 426 (2012). https://doi.org/10.3389/fphys.2012.00426

    Article  CAS  Google Scholar 

  46. F. J. Byfield, H. Aranda-Espinoza, V. G. Romanenko, et al., Biophys. J. 87, 3336 (2004). https://doi.org/10.1529/biophysj.104.040634

    Article  CAS  Google Scholar 

  47. M. T. Snaebjornsson, S. Janaki-Raman, and A. Schulze, Cell Metabolism 31, 1 (2019). https://doi.org/10.1016/j.cmet.2019.11.010

    Article  CAS  Google Scholar 

  48. A. Bijelic, M. Aureliano, and A. Rompel, Angew. Chem. Int. Ed. Engl. 58, 2980 (2018). https://doi.org/10.1002/anie.201803868

    Article  CAS  Google Scholar 

  49. D. Kobayashi, H. Nakahara, O. Shibata, et al., J. Phys. Chem. 121, 12895 (2017). https://doi.org/10.1021/acs.jpcc.7b01774

    Article  CAS  Google Scholar 

  50. A. Sakamoto, K. Unoura, and H. Nabika, J. Phys. Chem. 122, 1404 (2018). https://doi.org/10.1021/acs.jpcc.7b11251

    Article  CAS  Google Scholar 

  51. O. A. Lopatina, I. A. Suetina, M. V. Mezentseva, et al., Russ. J. Phys. Chem. B 14, 81–85 (2020). https://doi.org/10.1134/S1990793120010078

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education within the framework of the state task of the Federal Research Center for Chemical Physics, Russian Academy of Sciences, “Nanostructure systems of the new generation with unique functional properties” (registration no. 122040500071-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Balashov.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of interest.

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalidchik, F.I., Russu, L.I., Lopatina, O.A. et al. Activation of Cellular Cytokine Expression with Heteropoly Acids. Nanotechnol Russia 18, 264–270 (2023). https://doi.org/10.1134/S263516762370012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263516762370012X

Navigation