Skip to main content
Log in

Effect of Nanoemulsions Containing Astaxanthin or Its Esters on the Spatial Behavior of 5XFAD Mice

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The effect of nanoemulsions (NE) of phospholipids containing astaxanthin (AST) or its esters on the spatial behavior of transgenic mice with Alzheimer’s disease 5XFAD at the age of 4–6 months is studied in an elevated plus maze and via an “open field” test. The nanoemulsions obtained by injection have a diameter of 70–100 nm and a polydispersity index of <0.3. The animals receive the preparations with food 5 times a week for two months. The dose of AST and esters is 2 mg/kg of body weight. Once a week, the animals receive a double dose of drugs. The control animals receive NE that do not contain carotenoids. Behavioral tests show that AST-treated mice spend significantly less time in the open arms of the elevated plus maze compared to the control mice. In the case of esters, no reliable significance is found. In the “open field” test, AST esters have a positive effect on the animals, slowing down thigmotaxis disorders in 5XFAD mice. At the same time, the introduction of any NE does not affect a decrease in motor activity. Hence, in Alzheimer’s mice treated with both AST and esters, the behavioral parameters in the elevated plus maze and the “open field” test tend to improve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Reynolds, C. Laurie, R. L. Mosley, et al., Int. Rev. Neurobiol. 82, 297 (2007).

    Article  CAS  Google Scholar 

  2. H. Akiyama, S. Barger, S. Barnum, et al., Neurobiol. Aging 21, 383 (2000).

    Article  CAS  Google Scholar 

  3. C. Holmes, Neuropathol. Appl. Neurobiol. 39, 1 (2013).

    Article  Google Scholar 

  4. F. L. Heppner, R. M. Ransohoff, and B. Becher, Nat. Rev. Neurosci. 16, 358 (2015).

    Article  CAS  Google Scholar 

  5. J. Kim, Z. Kim, Z. I. Huang, et al., Biomol. Ther. 27, 327 (2019).

    Article  Google Scholar 

  6. R. Rao, A. R. Sarada, V. Baskaran, et al., J. Microbiol. Biotechnol. 19, 1333 (2009).

    Article  Google Scholar 

  7. Q. Chen, J. Tao, G. Li, et al., Eur. J. Pharmacol. 840, 33 (2018).

    Article  CAS  Google Scholar 

  8. M. N. Alam, M. M. Hossain, M. M. Rahman, et al., J. Diet Suppl. 15, 42 (2018).

    Article  CAS  Google Scholar 

  9. S. O. Rahman, B. P. Pa, S. Parvez, et al., Biomed. Pharmacother. 110, 47 (2019).

    Article  CAS  Google Scholar 

  10. H. Che, Q. Li, T. Zhang, et al., J. Agric. Food Chem. 66, 4948 (2018).

    Article  CAS  Google Scholar 

  11. C. Huang, C. Wen, M. Yang, et al., J. Neuroimmune Pharmacol. 16, 609 (2021). https://doi.org/10.1007/s11481-020-09953-4

    Article  Google Scholar 

  12. I. S. Kulikova, N. Yu. Lotosh, V. A. Turanova, and A. A. Selishcheva, Khim.-Farm. Zh., No. 8 (54), 18 (2020).

  13. P. Gentine, A. Bubel, C. Crucifix, et al., J. Liposome Res. 22, 18 (2012).

    Article  CAS  Google Scholar 

  14. T. D. Gould, Mood and Anxiety Related Phenotypes in Mice (Humana Press, Baltimore, MD, 2009).

    Book  Google Scholar 

  15. M. Komada, K. Takao, and T. J. Miyakawa, Vis Exp. 22, 1088 (2008).

    Google Scholar 

  16. T. P. O’Leary, H. M. Mantolino, K. R. Stover, et al., Genes Brain Behav. 19 (3), 2 (2020).

    Google Scholar 

  17. Ya. V. Gorina, Yu. K. Komleva, O. L. Lopatina, et al., Biomeditsina, No. 3, 47 (2017).

    Google Scholar 

  18. T. A. Voronina, R. U. Ostrovskaya, and T. L. Garibova, Guidelines for the Preclinical Study of Drugs with a Nootropic Type of Action. Guidelines for Conducting Preclinical Studies of Drugs, Part 1, Ed. by A. N. Mironov (Grif and K, Moscow, 2012) [in Russian].

    Google Scholar 

  19. Ya. V. Gorina, A. B. Salmina, N. V. Kuvacheva, et al., Sib. Med. Obozr., No. 4, 11 (2014).

  20. A. Satoh, S. Tsuji, Y. Okada, et al., J. Clin. Biochem. Nutr. 44, 280 (2009).

    Article  CAS  Google Scholar 

  21. J. Wojsiat, K. M. Zoltowska, K. Laskowska-Kaszub, and U. Wojda, Oxid. Med. Cell. Longev. 2018, 1 (2018). https://doi.org/10.1155/2018/6435861

    Article  CAS  Google Scholar 

  22. S. J. Lee, S. K. Bai, K. S. Lee, et al., Mol. Cells 16, 97 (2003).

    CAS  Google Scholar 

  23. E. Fanaee-Danesh, C. C. Gali, J. Tadic, et al., Biochim. Biophys. Acta Mol. Basis Dis. 1865, 2224 (2019).

    Article  CAS  Google Scholar 

  24. A. Sangsuriyawong, M. D. Limpawattana, and W. Siriwan Klaypradit, Food Sci. Biotechnol. 28, 529 (2019).

    Article  CAS  Google Scholar 

  25. T. Taksima, P. Chonpathompikunlert, M. Sroyraya, et al., Mar. Drugs 17 (11), 3 (2019).

    Article  Google Scholar 

  26. Y. Yao, M. Jia, J. G. Wu, et al., Pharm. Biol. 48, 801 (2010).

    Article  CAS  Google Scholar 

  27. E. O. Petukhova, Ya. O. Mukhamedshina, A. A. Rizvanov, et al., Geny Kletki, No. 3 (9), 234 (2014).

    Google Scholar 

  28. S. Jawhar, A. Trawicka, C. Jenneckensa, et al., Neurobiol. Aging 33, 196 (2012).

    Article  Google Scholar 

  29. N. S. Nikolaeva, A. V. Mal’tsev, R. K. Ovchinnikov, V. B. Sokolov, A. Y. Aksinenko, E. V. Bovina, and A. S. Kinzirsky, Biol. Bull. 46, 268 (2019).

    Article  Google Scholar 

  30. M. M. Chicheva, A. V. Mal’tsev, V. S. Kokhan, and S. O. Bachurin, Dokl. Akad. Nauk, Nauki Zhizni 494, 468 (2020).

    Google Scholar 

  31. F. Schneider, K. Baldauf, W. Wetzel, and K. G. Reymann, Physiol. Behav. 135, 25 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to staff member A.V. Kryuchkova of the Faculty of Biology, Lomonosov Moscow State University, for her great contribution to evaluation of the results and the text of this article, M.Yu. Kopaeva (Resource Center for Neurocognitive Research, National Research Center “Kurchatov Institute”) for assistance in working with the laboratory animals, the Resource Center for Neurocognitive Research, National Research Center “Kurchatov Institute” for providing equipment, and A.V. Symona (Representative office of Lipoid AG in Moscow) for providing phospholipids.

Funding

The work was supported by the National Research Center “Kurchatov Institute” (Research Center “Biomedical Technologies,” subtopic 2, order no. 1059 dated July 2, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Lotosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotosh, N.Y., Kryuchkova, A.V., Kulikov, E.A. et al. Effect of Nanoemulsions Containing Astaxanthin or Its Esters on the Spatial Behavior of 5XFAD Mice. Nanotechnol Russia 17, 227–234 (2022). https://doi.org/10.1134/S2635167622020124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622020124

Navigation