Skip to main content
Log in

Fabrication of Ultrafiltration Membranes from PAN Composites and Hydrophilic Particles for Isolation of Heavy Oil Components

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Membranes have been fabricated from polyacrylonitrile (PAN) doped with graphene oxide (GO) particles, PAN pyrolyzed by IR irradiation (IR-PAN-a), and nanodiamonds (ND). The pore structure of the resulting membranes has been studied. It has been shown that the addition of carbonaceous components slightly reduces the average pore size of the membranes from 17 to 12–15 nm, thereby leading to a decrease in the water permeability of membranes from 158 to 80.9–119.9 kg/(m2 h atm). Doping with particulate additives led to surface hydrophilization: the contact angle of water decreased from 65° to 48°–55°, facilitating the flow of crude oil solutions in toluene by a factor of 2–3 compared to the PAN membrane. However, the addition of GO or IR-PAN-a promoted a significant increase in irreversible membrane fouling. On the other hand, the addition of nanodiamonds not only reduced the overall fouling of the membrane and increased the permeability of the feed mixture from 4.93 to 8.47 kg/(m2 h atm), but also made it possible to recover more than 96% of the pure toluene flux. The rejection ratio of ND-doped membranes during the filtration of 10 g/L oil solutions in toluene was 85–89%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Yu. M. Ganeeva, T. N. Yusupova, and G. V. Romanov, Russ. Chem. Rev. 80, 993 (2011).

    Article  CAS  Google Scholar 

  2. O. C. Mullins, D. J. Seifert, J. Y. Zuo, and M. Zeybek, Energy Fuels 27, 1752 (2013).

    Article  CAS  Google Scholar 

  3. Kashefi Sepideh, M. N. Lotfollahi, and Shahrabadi Abbas, Petr. Chem. 59, 1201 (2019).

  4. A. A. Yushkin, A. V. Balynin, A. I. Nekhaev, and A. V. Volkov, Membr. Membr. Technol. 3, 139 (2021).

    Article  CAS  Google Scholar 

  5. S. M. Saufi and A. F. Ismail, Carbon 42, 241 (2004).

    Article  CAS  Google Scholar 

  6. P. J. Arias-Monje, M. Lu, J. Ramachandran, M. H. Kirmani, and S. Kumar, Polymer 211, 123065 (2020).

    Article  CAS  Google Scholar 

  7. A. A. Yushkin, A. V. Balynin, M. N. Efimov, D. G. Muratov, G. P. Karpacheva, and A. V. Volkov, Membr. Membr. Technol. 4, 251 (2022).

    Article  CAS  Google Scholar 

  8. H.-A. Tsai, Y.-L. Chen, K.-R. Lee, and J.-Y. Lai, Sep. Purif. Technol. 100, 97 (2012).

    Article  CAS  Google Scholar 

  9. E. Drioli and L. Giorno, Encyclopedia of Membranes (Springer, 2016).

    Book  Google Scholar 

  10. N. Scharnagl and H. Buschatz, Desalination 139, 191 (2001).

    Article  CAS  Google Scholar 

  11. T. D. Tran, S. Mori, and M. Suzuki, Thin Solid Films 515, 4148 (2007).

    Article  CAS  Google Scholar 

  12. L. Marbelia, M. Mulier, D. Vandamme, K. Muylaert, A. Szymczyk, and I. F. J. Vankelecom, Algal Res. 19, 128 (2016).

    Article  Google Scholar 

  13. C. Klaysom, S. Hermans, A. Gahlaut, S. Van Craenenbroeck, and I. F. J. Vankelecom, J. Membr. Sci. 445, 25 (2013).

    Article  CAS  Google Scholar 

  14. P. Yu. Apel, S. Velizarov, A. V. Volkov, T. V. Eliseeva, V. V. Nikonenko, A. V. Parshina, N. D. Pismenskaya, K. I. Popov, and A. B. Yaroslavtsev, Membr. Membr. Technol. 4, 69 (2022).

    Article  CAS  Google Scholar 

  15. D. J. Miller, D. R. Dreyer, C. W. Bielawski, D. R. Paul, and B. D. Freeman, Angew. Chem. Int. Ed. 56, 4662 (2017).

    Article  CAS  Google Scholar 

  16. D. Rana and T. Matsuura, Chem. Rev. 110, 2448 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. X. Yang, B. Zhang, Z. Liu, B. Deng, M. Yu, L. Li, H. Jiang, and J. Li, J. Mater. Chem. 21, 11908 (2011).

    Article  CAS  Google Scholar 

  18. B. Cheng, Z. Li, Q. Li, J. Ju, W. Kang, and M. Naebe, J. Membr. Sci. 534, 1 (2017).

    Article  CAS  Google Scholar 

  19. N. H. Ismail, W. N. W. Salleh, A. F. Ismail, H. Hasbullah, N. Yusof, F. Aziz, and J. Jaafar, Sep. Purif. Technol. 233, 116007 (2020).

    Article  CAS  Google Scholar 

  20. Y. Li, S. Huang, S. Zhou, A. G. Fane, Y. Zhang, and S. Zhao, J. Membr. Sci. 556, 154 (2018).

    Article  CAS  Google Scholar 

  21. L.-F. Fang, S. Jeon, Y. Kakihana, J. Kakehi, B.-K. Zhu, H. Matsuyama, and S. Zhao, J. Membr. Sci. 528, 326 (2017).

    Article  CAS  Google Scholar 

  22. J.-H. Jiang, L.-P. Zhu, H.-T. Zhang, B.-K. Zhu, and Y.-Y. Xu, J. Membr. Sci. 457, 73 (2014).

    Article  CAS  Google Scholar 

  23. E. Grushevenko, A. Balynin, R. Ashimov, S. Sokolov, S. Legkov, G. Bondarenko, I. Borisov, M. Sadeghi, S. Bazhenov, and A. Volkov, Polymers 14, 1625 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C. S. Ong, P. S. Goh, W. J. Lau, N. Misdan, and A. F. Ismail, Desalination 393, 2 (2016).

    Article  CAS  Google Scholar 

  25. S. Ayyaru and Y.-H. Ahn, J. Membr. Sci. 525, 210 (2017).

    Article  CAS  Google Scholar 

  26. X. Wang, Y. Zhao, E. Tian, J. Li, and Y. Ren, Adv. Mater. Interfaces 5, 1701427 (2018).

    Article  Google Scholar 

  27. J. Zhang, Q. Xue, X. Pan, Y. Jin, W. Lu, D. Ding, and Q. Guo, Chem. Eng. J. 307, 643 (2017).

    Article  CAS  Google Scholar 

  28. Y. Eremin, A. Grekhov, and A. Belogorlov, Membranes 12, 1100 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Q. Liu, S. Huang, Y. Zhang, and S. Zhao, J. Colloid Interface Sci. 515, 109 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. A. Yu. Pulyalina, N. S. Tyan, I. I. Faikov, G. A. Polotskaya, and V. A. Rostovtseva, Membr. Membr. Technol. 4, 328 (2022).

    Article  CAS  Google Scholar 

  31. D.-G. Yu, M.-Y. Teng, W.-L. Chou, and M.-C. Yang, J. Membr. Sci. 225, 115 (2003).

    Article  CAS  Google Scholar 

  32. J.-H. Qiu, Y.-W. Zhang, Y.-T. Zhang, H.-Q. Zhang, and J.-D. Liu, J. Colloid Interface Sci. 354, 152 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. X. Li, X. Fang, R. Pang, J. Li, X. Sun, J. Shen, W. Han, and L. Wang, J. Membr. Sci. 467, 226 (2014).

    Article  CAS  Google Scholar 

  34. H. Younas, H. Bai, J. Shao, Q. Han, Y. Ling, and Y. He, J. Membr. Sci. 541, 529 (2017).

    Article  CAS  Google Scholar 

  35. G. Arthanareeswaran, T. K. Sriyamuna Devi, and M. Raajenthiren, Sep. Purif. Technol. 64, 38 (2008).

    Article  CAS  Google Scholar 

  36. L. Yan, Y. S. Li, and C. B. Xiang, Polymer 46, 7701 (2005).

    Article  CAS  Google Scholar 

  37. X. Zhang, X. Fang, J. Li, S. Pan, X. Sun, J. Shen, W. Han, L. Wang, and S. Zhao, J. Colloid Interface Sci. 514, 760 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. V. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, Nano-Enabled Med. Appl. 313 (2020).

  39. A. Krueger and D. Lang, Adv. Funct. Mater. 5, 890 (2012).

    Article  Google Scholar 

  40. H. Etemadi, R. Yegani, and M. Seyfollahi, Sep. Purif. Technol. 177, 350 (2017).

    Article  CAS  Google Scholar 

  41. M. N. Efimov, V. E. Sosenkin, Yu. M. Volfkovich, A. A. Vasilev, D. G. Muratov, S. A. Baskakov, O. N. Efimov, and G. P. Karpacheva, Electrochem. Commun. 96, 98 (2018).

    Article  CAS  Google Scholar 

  42. M. N. Efimov, A. A. Vasilev, D. G. Muratov, A. E. Baranchikov, and G. P. Karpacheva, J. Environ. Chem. Eng. 7, 103514 (2019).

    Article  CAS  Google Scholar 

  43. A. A. Yushkin, M. N. Efimov, A. A. Vasil’ev, V. I. Ivanov, Yu. G. Bogdanova, V. D. Dolzhikova, G. P. Karpacheva, G. N. Bondarenko, and A. V. Volkov, Polym. Sci., Ser. A 59, 880 (2017).

    Article  CAS  Google Scholar 

  44. W. H. Lee, J. Y. Bae, A. Yushkin, M. Efimov, J. T. Jung, A. Volkov, and Y. M. Lee, J. Membr. Sci. 613, 118477 (2020).

    Article  CAS  Google Scholar 

  45. M. N. Efimov, N. A. Zhilyaeva, D. G. Muratov, A. A. Vasiliev, A. A. Yushkin, and G. P. Karpacheva, Russ. J. Phys. Chem. 97, 177 (2023).

    Article  CAS  Google Scholar 

  46. D. Bakhtin, S. Bazhenov, V. Polevaya, E. Grushevenko, S. Makaev, G. Karpacheva, V. Volkov, and A. Volkov, Membranes 10, 419 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Y. M. Shulga, S. A. Baskakov, V. A. Smirnov, N. Y. Shulga, K. G. Belay, and G. L. Gutsev, J. Power Sources 245, 33 (2014).

    Article  CAS  Google Scholar 

  48. E. Yu. Mironova, M. M. Ermilova, M. N. Efimov, L. M. Zemtsov, N. V. Orekhova, G. P. Karpacheva, G. N. Bondarenko, N. A. Zhilyaeva, D. N. Muraviev, and A. B. Yaroslavtsev, Russ. Chem. Bull. 62, 2317 (2013).

    Article  CAS  Google Scholar 

  49. V. V. Abalyaeva, G. V. Nikolaeva, M. N. Efimov, O. N. Efimov, N. N. Dremova, G. P. Karpacheva, and D. G. Muratov, Russ. J. Appl. Chem. 93, 1667 (2020).

    Article  CAS  Google Scholar 

  50. A. A. Ovcharova, V. P. Vasilevsky, I. L. Borisov, V. V. Usosky, and V. V. Volkov, Pet. Chem. 56, 1066 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried out using the equipment of the Shared-Use Center “Analytical Center for Problems of Deep Petroleum Refining and Petroleum Chemistry” at the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation, project no. 18-79-10260.

The synthesis of graphene oxide was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of government assignments (state registration number AAAA-A19-119032690060-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Yushkin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushkin, A.A., Balynin, A.V., Nebesskaya, A.P. et al. Fabrication of Ultrafiltration Membranes from PAN Composites and Hydrophilic Particles for Isolation of Heavy Oil Components. Membr. Membr. Technol. 5, 290–301 (2023). https://doi.org/10.1134/S2517751623040078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623040078

Keywords:

Navigation