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Abstract—A mathematical model is developed to describe microfiltration on membrane filters with plane-
parallel and cylindrical pores. Consideration is given to two cases of motion of Brownian particles having a
radius R comparable to the radius of the filter channel a. Relations are presented for the dependence of the
efficiency of particle deposition on the channel walls on the parameter  with different values of the
molecular interaction constant and with allowance for the hydrodynamic factor. The results of modeling
microfiltration on membrane filters with plane-parallel and cylindrical pores are compared. It is shown that
there is a qualitative agreement between the main characteristics of the microfiltration process for these two
types of membrane channel cross-section. It is established that the efficiency of purification on membrane
filters with cylindrical pores is considerably more significant than the efficiency attained with plane-parallel
pores.
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1. INTRODUCTION
There are many separation processes for the purifi-

cation of gas, liquid and solid substances from
nanoparticles. This is distillation [1, 2], filtration (in
micro- nano- and ultrafiltration mode) [3–6] and
other methods [7–10].

In [3] a classification of filtration processes
depending on the pore size and pressure at the inlet
and outlet of the filtration module is presented. In
practice, the efficiency of nuclear filters is determined
by the sieve effect, i.e. pore size determines the size of
the removal particles. The driving force of membrane
filtration processes is the transmembrane pressure dif-
ference [11–13]. The smaller the pore size, the greater
the pressure difference is at the inlet and outlet of the
membrane module, i.e. the less the pore size the
greater the pressure, which depends on the capacity of
the nuclear membrane filter. According to this classi-
fication micro- and ultrafiltration processes are con-
sidered. Microfiltration is a process in which mem-
branes are used with sizes up to 100 nm, that is the
highest level of nanoparticle size. The pressure dif-
ference is not very high, approximately one bar.
Ultrafiltration is used for the separation of particles
in the nanometer range (100–2 nm). Porosity and
capacity are usually low and pressure difference varies
at 1–6 bars.

In these membranes, the pore size corresponds
with nanoparticle size. In microfiltration nondis-
solved nanoparticles with a greater size than the pore
size are retained by the nuclear filter. Usually, particles
for the ultrafiltration process have a smaller size than
the pore size and the mechanism of this separation
process is the diffusion of nanoparticles through the
pores of the filter. For ultrafiltration, target compo-
nents are dissolved macromolecules. In our case, non-
dissolved solid nanoparticles. The case is considered
when the concentration of nanoparticles is small (you
can ignore their interaction with each other) and their
size is smaller than the pore size. In practice this is the
case for the dilute solution containing a small concen-
tration of nanoparticles and the task of high purifica-
tion of liquids from nanoparticles is set. Liquids with-
out nanoparticles are used in nanoelectronic, opto-
electronic and other applications.

The settling of nanoparticles on the pore walls has,
on the one hand, a positive effect, since the liquid is
purified, and on the other hand, a negative effect, since
the pores are clogged and the fluid flow decreases. In
both cases, it is required to calculate the sedimentation
of nanoparticles in the pores of the filters.

The microfiltration and ultrafiltration method is
beginning to find a more widespread use for obtaining
high-purity substances. In this regard, it is important
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Fig. 1. Diagram of the membrane filter element channel.
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to solve the problem of the effectiveness of the micro-
filtration method, to establish the stages that limit the
separation process, as well as to establish the depen-
dence of the separating ability of filters on the main
parameters of the micro- ultrafiltration processes.

Membrane filters are most widely used for micro-
filtration. The “sieve effect” serves as the main con-
tributor to the degree of purification through these
types of filters. In this case, liquids are purified from
particles, the size of which, as a rule, exceeds the pore
size of the filter. Most often, for high purification of
liquids, membrane filters with a pore size of 0.5 μm are
used, and more recently, 0.1–0.2 μm. The maximum
quantity for the particle size distribution curve for
many liquids is in the range 0.06–0.08 μm, and in
some cases even lower [10]. Making filters with pores
of this size is difficult. When the liquid moves in the
channel through the pores of the filter, particles from
the liquid can settle on the channel walls. Thus, not
only the “sieve effect,” but also the diffusion purifica-
tion mechanism is realized.

Therefore, this article is devoted to the develop-
ment of a mathematical model for the efficient micro-
filtration on membrane filters with plane-parallel and
cylindrical pores.

2. THEORY

In a number of works [14–20], the process of depo-
sition of particles on the channel walls due to diffusion
and sedimentation of particles under the action of van
der Waals forces between condensed uncharged bodies
is considered [21–23]. The magnitude of these forces
depends on the ratio of the particle radius R and the
transverse size of the filter pore channel a (Fig. 1). For

, the interaction is significant only in the imme-
diate vicinity of the channel wall. This circumstance
made it possible to take into account the action of van
der Waals forces by setting a special boundary condi-
tion of a type of first-order reaction with a constant K
[18, 24]. In [14, 15, 25], the case was studied when

 and . If R is comparable with a, this
approximation cannot be used, therefore, in the theo-
retical and applied aspects of the problem under con-
sideration, it is of interest to develop a model of the
microfiltration process on membrane filters when par-
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ticles move in the channel with sizes comparable to
those of the filter pores.

2.1. The Plane-Parallel Channel Model
Consider a plan-parallel channel 2a wide

(Fig. 1). Let  denote the probability of
finding a particle of radius R inside an infinitely
small parallelepiped bounded by the planes

. A particle mov-
ing in a channel experiences collision with molecules
of the medium and diffuses in it at a certain velocity. In
this case, the Fokker-Planck approximation is valid,
according to which the probability density  sat-
isfies a diffusion-type equation [22, 26], which in the
stationary case can be written as

(1)

where L is the maximum laminar f low rate; D(r) is the
particle diffusion coefficient; F(r) is the Van der Waals
force; k is the Boltzmann constant; T is the absolute
temperature; v(r) is the dimensionless function of the
velocity of the f low moving in the channel;

), where  is the diffu-
sion coefficient of a particle in an infinite medium
[27]; μ is the viscosity, fr(r) is a factor that takes into
account the influence of the boundary.

In [28–30], an explicit expression for the quantity
fr(r) was obtained for the case when one of the channel
walls is at infinity. In our case, when the particle is able
to interact with both walls of the channel, this value
can be specified as

(2)

where

(3)

This expression qualitatively reflects the main reg-
ularities of the interaction of a particle with the chan-
nel walls and, with an accuracy of several percent,
approximates the previously obtained expression
when one of the channel walls is referred to infinity.

In determining the value of F(r) in equation (1), we
use the Hamaker approximation for the force of
attraction between a sphere and a plane [31, 32]. In
our case, we define the force of interaction of the par-
ticle with the channel walls as a superposition of the
forces of attraction of the particle to each of the two-
channel walls separately and represent the following
expression:

(4)

where A is the Hamaker constant.
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Equation (1) is solved with boundary conditions in
the form [8]:

(5)

(6)

(7)

where , δ is the minimum gap between
the particle and the channel wall, zK is the channel
length.

Boundary condition (5) determines the probability of
finding a particle at the channel entrance, condition (6)
indicates the fact that along the entire length of the
channel, particles located near the channel wall (the
gap does not exceed δ, and the distance of the particle
center from the channel axis is greater than or is equal
to rmδ), are considered captured by the channel walls
and leave the f luid f low. Condition (7) follows from
the symmetry condition at  and the continuity of
the function ω(r, z) along the channel length.

Let’s move on to dimensionless variables:

(8)

where 
In this case, Eq. (1) with boundary conditions (5)–

(7) will be written as

(9)

(10)

(11)

(12)

where 

Equation (9) with boundary conditions (10)–
(12) was solved numerically by the finite difference
method. The considered boundary value problem
has a singularity: as , the expression

 if , then
 To ensure uniform accuracy of

approximation over the entire interval, a grid with a
variable step was used:
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in which the value of the step  decreases monotonically
at . The solution to Eq. (9) was presented in the
form of a table of values of the functions  at the
nodes of the grid .

The efficiency of particle deposition in the channel
was estimated by the quantity , which at 
is equal to the probability density of finding a particle
in the channel section with the plane  [10].
The value of the function  is the average concen-
tration of particles in the channel cross section at

 in the limiting case, when the particle size
is small, , and equation (1) is the usual
diffusion equation. The value of the function 
was calculated by the formula

(13)

where 

The model of the process of high purification of
liquids from suspended nanoparticles by the micro-
filtration method, determined by the system of
Eqs. (9)–(12), contains four dimensionless parame-
ters: B, æ, ε, ϕK. To assess their numerical values, the
following values were used: a = 0.1 μm, A = 6 × 10–20 J,
μ = 0.6 × 10–3 N s/m2, L = 0.1 m s–1 which correspond
to the data available in the literature on the size of the
porous membrane, the characteristics of the moving
flow, and the constant of van der Waals interaction
[33]. The value B = 10, the parameter ε was taken
equal to 0.05, which corresponds to the value of the
minimum gap δ = 50 Å.

The data on the dependence  at various values
of æ are shown in Fig. 2. It is seen that with an increase
in the ratio æ, the function  for different values of
ϕ first increases, and for  begins to decrease.
For the convenience of analyzing this regularity of the
process, as well as calculating the function , we
approximate its expression:

(14)

The parameter λ at  practically does not
depend on ϕ, since in the coordinates log , ϕ the
function is rectilinear (Fig. 3). Thus, the feature noted
above in the behavior of the function  can be rep-
resented as a dependence of the parameter λ on 
(Fig. 4), which has a minimum at a certain value of

. The presence of this minimum can be explained
as follows. With an increase in the parameter 
( ), the decrease in the efficiency of the
microfiltration process is mainly associated with a
decrease in the particle mobility in the channel, due to
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Fig. 2. Dependence of the probability density of finding a
particle in the channel section with the plane  on
the dimensionless length of the channel at values of :
(1) 0.1; (2) 0.5; (3) 0.7; (4) 0.9; (5) is the result of work [8]
for 
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an increase in the resistance of the medium. In this
case, along with the usual influence of the medium on
the nature of the particle motion in accordance with
the Stokes law [34] (the factor  in the function
fr(u)), an additional effect appears due to an increase
in the viscosity of the medium when the particle
moves near the channel wall, when . For ,
the effect of the channel walls on the particle motion is
practically excluded and the efficiency of the microfil-
tration process is higher (Fig. 2).
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Fig. 3. Dependence of the logarithm of the probability
density on the dimensionless channel length at values of :
(1) 0.1. (2) 0.5; (3) 0.7; (4) 0.9.
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At the same time, for the case when , an
increase in the purification efficiency is possible due
to the action of attractive forces of various nature,
among which the action of van der Waals forces is
mandatory. At , it becomes decisive in com-
parison with the diffusion mechanism of microfiltra-
tion. It should be noted that a decrease in the particle
path in the direction perpendicular to the channel wall
(  at ) also contributes to an
increase in the purification efficiency. To estimate the
influence of this effect, calculations were carried out
for the case when B = 0, i.e., the action of the Van der
Waals forces is negligible. In this case, no extreme
point is observed for the dependence of λ on  (Fig. 4),
i.e. a decrease in the path of a particle to the channel
wall with an increase in  does not compensate for a
change in the purification efficiency due to a decrease
in the particle mobility. The purification efficiency
does not increase.

Thus, during high purification of liquids from sus-
pended nanoparticles, an extreme dependence of the
purification efficiency on the ratio of the particle size
and the filter pore channel size  is observed.
Moreover, for , the main contribution to the
purification efficiency is made by the mechanism of
diffusion movement of particles in the pores of the fil-
ter, and at values of , the increase in the puri-
fication efficiency is due to the action of van der Waals
forces. The  value is determined by the nature of
the nanoparticle and medium, as well as by the condi-
tions for microfiltration of liquids.

Nuclear membranes are widely used in the produc-
tion of ultrapure substances by the method of micro-
filtration [35, 36]. These membranes differ from other
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Fig. 4. Dependence of λ on the dimensionless particle
radius. (1) B = 10, (2) B = 0.
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types of membranes in their regular cylindrical form,
their uniform structure, and the very small degree of
variation in the dimensions of the pores [37, 38].

Along with the principal sieve mechanism of puri-
fication, filtration in membranes takes place by the
deposition of particles on the walls of the pores of the
membrane (the particle radius R being less than the
radius of the pores a). In connection with this, it is
important to study the mechanisms of particle deposi-
tion in these filters and establish the dependence of the
separating capacity of the filter on the main parame-
ters of the microfiltration process.

The well-known model in [39] describes particles,
suspended in a f luid and ranging in size from several
microns to 100 μm, through the channels of a nuclear
membrane. In this case, due to the relatively large size
of the particles, an approximation based on the con-
struction of the paths of an individual particle is valid.

At the same time, for a number of f luids that are
subjected to microfiltration, the maximum on the par-
ticle-size distribution curve lies within the range 0.06–
0.08 μm. The deposition process in this case—when
the particles behave as Brownian particles as they
move in the channels—was examined in [40]. Here,
the case of a membrane with plane-parallel pores was
studied.

2.2. Cylindrical Channel Model
In the present investigation, we study the process of

microfiltration for a membrane with cylindrical pores.
The model of the microfiltration process is

described by an equation of the diffusion type. For a
cylindrical channel, this equation is represented in the
form:

(15)

where r and z are the coordinates of the center of the
particle along the radius and the axis of the cylindrical
pore, respectively;  is the probability
of finding a particle inside an infinitesimal volume
bounded by the coordinate surfaces ,

; L is the rate of laminar f low of the
fluid, which is assumed to be independent of the coor-
dinate, r; F(r) is the van der Waals force; k is the Boltz-
mann constant; T is the absolute temperature;

, where  is the coefficient of diffu-
sion of a particle in an infinite medium and  is the
hydrodynamic factor. The latter accounts for the effect
of the channel walls on viscous drag.

In determining F(r), we will proceed on the basis of
the London-Hamacker general formula for the energy
of molecular interaction

(16)
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where  is the region of space bounded by a sphere of
radius R (the particle);  is all space from which we
remove a cylinder of radius a of infinite length. The
particle being examined is located inside the cylinder
at the distance H from its surface; q is the number of
atoms per unit volume of the condensed phase (spher-
ical particle, cylindrical channel); βl–6 is the energy of
the pairwise interactions of identical atoms in accor-
dance with London’s theory of dispersion forces [21];
l is the distance between atoms.

After performing the corresponding calculations,
we reduce the six-dimensional integral (16) to the fol-
lowing unidimensional integral:

(17)

where  is the Hamacker constant; Q = a2 –
. Then the van der Waals force F(r)

is found from the relation

(18)

We find an asymptotic expression for the force F(r)
in the case when the gap H between the spherical par-
ticle and the channel wall is much smaller than the
radii of curvature of the particle surface R and cylinder a.

It should be noted that at H ! R, the main contri-
bution to the integral (17) is made by values of ϕ close
to zero (the multiplier  at  and

). Thus, the bracketed expression in (17) can be
replaced by its value at  and . Let us now
change the expression for Q. Expressing r through H
by means of the relation
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In the case of small H in (20), we limit ourselves to a
linear approximation Q0 and discard the term with H2.

Making these simplifications in (17), we obtain
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Fig. 5. Dependence of the van der Waals force on the
dimensionless distance between the particle and the chan-
nel wall: æ: (1, 1') 0.1; (2, 2') 0.4; (3, 3') 0.8; B = 2.5. The
solid line shows the relations corresponding to a mem-
brane with cylindrical channels, while the dashed line
shows the relations for a membrane with plane-parallel
channels.
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Fig. 6. Dependence of the quantity λ: (a) on the dimensionless rad
(b) on the molecular interaction constant B. (1, 1')  = 0.1; (2
corresponding to a membrane with cylindrical channels, while 
parallel channels.
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It is not hard to see that Eq. (24) coincides with the
expression for force obtained from the [42] Derjaguin
formula [32, 42] for the present case of molecular
interaction between bodies bounded by spherical and
cylindrical surfaces.

In calculating fh(r), we use an approximate formula
[43] corresponding to the relation

(25)

where  are the maximum and mini-
mum sizes of the gap between the sphere and the
cylindrical surface of the channel. Let us change over
to the dimensionless variables , ,
where . Then with the same bound-
ary conditions that were examined in [40], Eq. (15) is
written in the form
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Fig. 7. Dependence of the minimum channel length ϕmin on the dimensionless particle radius . B: (1, 1') 0; (2, 2') 0.5; (3, 3') 2.5. The
solid line shows the relations corresponding to a membrane with cylindrical channels, while the dashed line shows the relations
for a membrane with plane-parallel channels.
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removed from the fluid flow. This parameter is intro-
duced because at 

 then . After differentiation of
(17) in accordance with (18) and the transition to
dimensionless variables, the expression for the van der
Waals force is represented in the form

(30)

where  is the molecular interaction

constant; . If as parameter B
we examine the complex Hamacker constant—which,
in accordance with the London-Hamacker theory
makes it possible to account for the molecular interac-
tion of a particle with a dispersion medium [21, 32, 33]—
then Eq. (30) determines the resulting van der Waals
force acting on the spherical particle on the channel-
wall side and on the f luid f lowing in the channel.
Equation (26), with boundary conditions (27)–(29),
was solved by the method used in [40]. The efficiency
of particle deposition in the channel was evaluated
from the quantity

(31)

Numerical solution of Eqs. (26)–(29) on a com-
puter established that purification efficiency ,
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as a function of channel length at  can be
approximated by an expression of the form

(32)

where the parameter λ is independent of ;  is the
minimum channel length at which purification effi-
ciency can still be evaluated from Eq. (32). The quan-
tity  was evaluated on the basis of the condition
that the difference between the values of ,
determined from Eqs. (31) and (32) not exceed 10%.

The results of the calculations are shown in
Figs. 5–8; the solid line in all figures shows the rela-
tions corresponding to a membrane with cylindrical
channels, while the dashed line shows the relations for
a membrane with plane-parallel channels. Figure 5
presents graphs of the dependence of the van der Waals
force on the value of the parameter  (the
dimensionless minimum distance between interacting
surfaces). It is evident that the force  is greater for
a cylindrical pore than for a plane-parallel pore.
Meanwhile, the difference in the forces is greater, the
greater the value of the parameter . It follows from
Fig. 6 that the dependence of purification efficiency
on the parameter  is of an extreme nature the func-
tion  has a minimum at .

However, λ is considerably greater in the case of a
membrane with cylindrical channels, while  is
lower (Fig. 6). Along with this, there is a marked dif-
ference in the values of the parameter  (Fig. 7). As
regards the region of van der Waals force saturation
(the range of δ in which λ is independent of the gap
size δ), it is nearly the same for both cases (Fig. 8).

ϕ ≥ ϕminc
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Fig. 8. Dependence of the value of λ on the dimensionless gap size δ. : (a) 0.1; (b) 0.5; (c) 0.8; B: (1, 1') 0; (2, 2') 0.5; (3, 3') 1.25;
(4, 4 ') 2.5. The solid line shows the relations corresponding to a membrane with cylindrical channels, while the dashed line shows
the relations for a membrane with plane-parallel channels.
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 CONCLUSIONS

Thus, the calculations show that microfiltration
carried out with membranes having plane-parallel
channels is qualitatively the same as microfiltration
carried out with membranes having cylindrical chan-
nels. At the same time, in a quantitative sense, the effi-
ciency of purification (the parameter λ) turns out to be
appreciably greater for membranes with cylindrical
pores. Meanwhile, the geometry of the cross section of
the membrane channels affects both the diffusional
transport of particles in pores of the filter (this mech-
anism makes the main contribution to purification
efficiency at ) and the van der Waals force.
The van der Waals force is connected mainly with
increases in purification efficiency at .
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