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Abstract—The characteristics of the biology of influenza viruses and coronavirus that determine the imple-
mentation of the infectious process are presented. With provision for pathogenesis of infection possible
effects of serine proteinase inhibitors, heparin, and inhibitors of heparan sulfate receptors in the prevention
of cell contamination by viruses are examined. It has been determined that chelators of metals of variable
valency and antioxidants should be used for the reduction of replicative activity of viruses and anti-inflam-
matory therapy. The possibility of a pH-dependent impairment of glycosylation of cellular and viral proteins was
traced for chloroquine and its derivatives. The use of low-toxicity drugs as part of adjunct therapy increases the
effectiveness of synthetic antiviral drugs and interferons and ensures the safety of baseline therapy.
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INTRODUCTION
Humanity is faced with the emergence of new, pre-

viously unknown strains of virulent respiratory viruses
that threaten the death of a large number of people
with mystical regularity. Influenza viruses and coro-
naviruses, which have been in contact with people
since ancient times, pose a particular epidemic/pan-
demic danger.

It is believed that the first major outbreak of respi-
ratory infection clinically similar to influenza was
described in detail by Hippocrates as early as 412 BC
as a contagious “Perinthian cough” (Kuszewski and
Brydak, 2000; Pappas, 2008). The next detailed write-
up of influenza-like epidemic respiratory disease
known as the “peasant fever” of 1173–1174 was only
compiled 1500 years later in England (Potter, 2001).
The first influenza pandemic is well-defined in 1580
(Potter, 2001; Daly et al., 2007). At the same time, in
the 16th century, this infectious disaster was called
“influenza” (influence, from Latin), since this disease
at that time was considered a bad “influence of
heaven” (Broxmeyer, 2006). Since then, 31 influenza
pandemics have been recorded, three of which were
observed in the 20th century and one took place in the
21st century (Kilbourne, 2006; Daly et al., 2007; Al-
Muharrmi, 2010) (Table 1).

Although a targeted search for pathogens capable
of causing epidemics/pandemics of acute respiratory
infections began at the end of the 19th century
(Pfeiffer, 1893; Olitsky and Gates, 1921a, 1921b), the
type-A influenza virus Mixovirus influenza was iso-
lated only in 1933 (Smith et al., 1933). B- and C-types
of influenza viruses were identified in 1940 and 1947,
respectively (Francis, 1940; Taylor, 1949), and only in
2011 the type-D influenza virus was isolated and char-
acterized (Hause et al., 2013; Ducatez et al., 2015).

Coronaviruses are also characterized by blanket
distribution (Suzuki et al., 2005; Koetz et al., 2006;
Sloots et al., 2006; Zhao et al., 2008) and seem to have
been in contact with humans since ancient times
(Wertheim et al., 2013). Until recently, it was believed
that coronavirus infections, which are manifested only
by symptoms of an ordinary cold, caused 15 to 35% of
seasonal acute respiratory infections. Children get sick
five to seven times more often than adults (McIntosh
et al., 1970; Callow et al., 1990; Holmes, 2001). In
humans, acute respiratory infections are caused by two
types of α-coronaviruses (229E and NL63) and two
types of β-coronaviruses (OC43 and HKU1) (Gaunt
et al., 2010). However, veterinarians have long known
that coronaviruses can cause fatal respiratory and
intestinal infections in animals (Pensaert, 1999). As a
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Table 1. Influenza pandemics of the last century

Pandemic (name) Years Strain Number of deaths 
(million people)

Spanish f lu 1918–1920 H1N1 40–50
Asian flu 1957–1958 H2N2 1–2
Hong Kong flu 1968–1970 H3N2 0.5–2
Swine flu 2009–2010 H1N1 0.5
potential biological threat, coronaviruses have posed a
real challenge to modern medicine. In recent decades,
new pandemic strains of coronaviruses that are extremely
dangerous to humans have often emerged: severe acute
respiratory syndrome coronavirus (SARS-CoV,
2002/2003), Middle East respiratory syndrome coro-
navirus (MERS-CoV, 2012), and the novel type of
pneumonia coronavirus (COVID-19, 2019/2020);
they are capable of causing severe, often unfavorable,
bronchiolitis and pneumonias (Cherry, 2004; Rama-
dan and Shaib, 2019; Hui et al., 2020).

Human coronaviruses were first isolated from
patients with acute respiratory diseases in 1965
(Hamre and Procknow, 1966; Tyrrell and Bynoe,
1966). Electron microscopy showed them to have a
coronal structure feature, what is subsequently
reflected in their name (Tyrrell et al., 1975). Since
then coronaviruses attracted little attention from
researchers for nearly three decades (before the emer-
gence of pandemic strains).

It is clear that pandemics of respiratory viral infec-
tions have plagued humankind in the past, and there is
no reason to believe that this will not happen in the
future. The time and place of the emergence of new
pandemics and virulence of pandemic virus strains
cannot be predicted.

BIOLOGICAL CHARACTERISTICS
OF INFLUENZA VIRUSES

AND CORONAVIRUSES
Influenza viruses belong to the family of ortho-

myxoviruses (Orhtomyxoviridae, RNA viruses with a
segmented genome) and are divided into four mono-
typic genera: influenza-A viruses (Alphainfluenza
virus), influenza-B viruses (Betainfluenza virus),
influenza-C viruses (Gammainfluenza virus), and
influenza-D viruses (Deltainfluenza virus), each of
them is represented by only one type of virus of the
same name. It is believed that only influenza-A viruses
have pandemic potential (Bouvier and Palese, 2008;
Spickler, 2016; King et al., 2018). Influenza-A viruses
are subdivided into subtypes with respect to the anti-
genic properties of hemagglutinin HA (the glycopro-
tein of the virion envelope, which ensures the recogni-
tion of target cells and the binding of viral particles to
terminal residues of sialic acids of the glycoproteins of
the plasma membrane of epithelial cells) and neur-
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aminidase NA (exo-α-sialidase, which catalyzes the
cleavage of the glycosidic bonds of the terminal resi-
dues of sialic acids of oligosaccharides, glycoproteins,
glycolipids and thereby allows the release of daughter
influenza virions from infected cells).

In total, there are 18 known serotypes of hemagglu-
tinin (H1–H18) and 11 identified serotypes of neur-
aminidase (N1–N11); therefore, it is theoretically
possible to form 198 different combinations of these
proteins, subtypes of the influenza-A virus (Skehel,
2009; Tong et al., 2013; Quan et al., 2016; Kosik and
Yewdell, 2019; Zhao et al., 2019), of which more than
120 combinations have been identified in nature (Tsai
and Chen, 2011; Rejmanek et al., 2015).

Eight negatively polar segments of the RNA
genome of the influenza virus encode at least ten
structural and nine regulatory proteins (Varga et al.,
2011; Muramoto et al., 2013; Hutchinson et al., 2014;
Vasin et al., 2014). There is some uncertainty about
the proteome of influenza-A viruses due to the fact
that, unlike most RNA viruses, the transcription and
translation of their genome occurs in the nucleus, not
in the cytoplasm of infected cells. This allows influ-
enza-A viruses (Fig. 1) to exploit cellular splicing
machinery to generate splice variants of viral mRNAs.
In addition, influenza-A viruses seem to use alterna-
tive open reading frames to expand their proteome.

Most viral proteins are localized within the viral
lipid envelope; only HA and NA, in a molar ratio of
about 10 : 1 (Mitnaul et al., 2000), and the M2 protein
embedded in the virion envelope carry antigenic deter-
minants available for the action of immune antibodies
(Kosik and Yewdell, 2019). HA and NA molecules are
extensively glycosylated proteins, which ensures their
functional activity and aberration from protective
immune responses via screening of antigenic determi-
nants (Kim et al., 2018; York et al., 2019).

Unlike influenza viruses, coronaviruses are envel-
oped RNA viruses (with nonsegmented, positive-
polar RNA) of Nidovirales order, Coronaviridae fam-
ily, Orthocoronavirinae subfamily (Fehr and Perlman,
2015). Coronaviral virions have spherical shape with
characteristic clavate projections (Neuman et al.,
2006; Barcena et al., 2009) (Fig. 2). The virion enve-
lope is formed by a lipid bilayer where S-, M-, and E-
proteins are fixed (Lai and Cavanagh, 1997; De Haan
and Rottier, 2005).

Spike proteins (SPs) function as abundantly glyco-
sylated trimeric complexes (Zheng et al., 2017; Par-
sons et al., 2019), ensure the interaction of the virion
with epithelial cell receptors and the subsequent inter-
nalization of the viral genome (Li, 2016).

Membrane proteins (MPs) function as a dimer
with a glycosylated N-terminal ectodomain (Nal
et al., 2005) and can accept two different conforma-
tional states. The conformers of this glycoprotein
determine the assembly and shape of the viral particle
(Neuman et al., 2011).
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Fig. 1. Structural elements of the type A influenza virus. HA—hemagglutinin (trimer), NA—neuraminidase (tetramer), M1—
matrix protein 1, M2—matrix protein 2, ME—phospholipid membrane, NEP—nuclear exporter protein, RNA—negative-strand
RNA in ribonucleoprotein segments, NP—nucleocapsid protein, PA—acidic polymerase protein, PB1—basic polymerase pro-
tein 1, PB2—basic polymerase protein 2.
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Fig. 2. Structural elements of the coronavirus virion. SP—
S-protein (trimer), МР—dimer of the membrane protein
in various conformations, EP—transmembrane envelope
protein, ME—phospholipid membrane, RNA—positive-
strand RNA, NP—nucleocapsid protein.
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Envelope proteins (EPs) are transmembrane pro-
teins that are found in small quantities and perform
several functions: virion assembly, envelope forma-
tion, and the release of a viral particle from the cell.
There are indirect indications that they are glycopro-
teins (Schoeman and Fielding, 2019).

Nucleoproteins (NPs) are the only proteins found
inside the virion. They enable the packaging of the
viral genome (McBride et al., 2014).

It is noteworthy that, as in the case of influenza-A
viruses, the envelope proteins of coronaviruses are gly-
coproteins.

The process of cell penetration by the influenza
virus consists of several stages. A critical moment in
the life cycle of the influenza virus is the recognition of
specific cellular receptors, glycoproteins or glycolip-
ids. The glycan contains the terminal α2,6- or α2,3-
sialic acid (Leung et al., 2012; Byrd-Leotis et al.,
2017). The attachment of the HA virion to sialylated
glycoproteins and glycolipids of the plasma membrane
of epithelial cells initiates various endocytosis mecha-
nisms. This rapidly leads to the formation of endo-
somes, where each of them contains a viral particle
(Chardonnet and Dales, 1970; Matlin et al., 1981;
Kartenbeck et al., 1989; Rojek et al., 2008; Nanbo
et al., 2010; Watanabe et al., 2010; Boulant et al.,
2015).

The next stage of internalization, the release of the
viral genome (RNA segments) into the cell cytosol,
depends on the activity of Na+/K+-ATPase, which is
localized in the endosomal membrane and functions
as a proton pump.

The Na+/K+-ATPase results in acidification of the
medium inside endosomes/lysosomes to a pH of 5.0
(Cain et al., 1989). Acidification of the intraendoso-
mal medium, i.e., the accumulation of H+ protons in
the endosome content, makes it possible to realize the
protonophore potential of the tetramers of the M2
BIO
protein of the viral-particle envelope (Sugrue and
Hay, 1991; Pinto et al., 1992; Manzoor et al., 2017).
The penetration of hydrogen ions into the viral particle
mediates conformational changes and decomposition
of the structural components of the virion envelope
and, ultimately, leads to labilization of its genome
(Shibata et al., 1983; Yoshimura and Ohnishi, 1984).
However, the fusion of the envelope of the viral parti-
cle and the endosomal membrane, which ensures the
release of the RNA genome of the virus into the cell
cytosol, is possible only with the participation of the
HA virion, which undergoes preliminary proteolytic
processing by serine (secretory trypsin-like) protein-
ases (Klenk, 1975; Lazarowitz and Choppin, 1975;
Tashiro et al., 1987; Steinhauer, 1999; Kido et al.,
2009).
LOGY BULLETIN REVIEWS  Vol. 11  No. 2  2021
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Translocation of RNA segments of the influenza-
virus genome from the cytosol into the cell nucleus is
necessary for their replication. During this process
viral mRNAs of the nucleus enter the cytosol for con-
sequent synthesis of proteins of viral particles. Self-
assembly of virions occurs on the apical part of the
plasma membrane of epithelial cells, where HA and
NA molecules are concentrated (Samji, 2009; Dou
et al., 2018).

The internalization process of coronaviruses is
determined by functional activity of the virion SP
envelope. The coronaviral SP is strongly glycosylated
structure that enables the fixation of viral particles on
the plasma membrane of epithelial cells and the subse-
quent release of their RNA genome into the cell cyto-
sol (Li, 2016; Watanabe et al., 2020). Each SP has two
receptor-binding domains localized on its S1 subunit;
they are capable of interacting either with specific pro-
teins or with sialoglycans of epithelial cells (Li, 2012;
Shahwan et al., 2013; Hulswit et al., 2019). For exam-
ple, MERS-CoV preferentially binds to α2,3-linked
sialic acid (to a lesser extent to α2,6-linked sialic acid)
(Li et al., 2017). The COVID-19 viruses appear to have
a similar affinity for α2,3-sialic acid conjugates.

Internalization of the viral genome can occur either
through endocytosis of the virion (the process is
largely similar to the process of internalization of
influenza viruses) or by fusion of the coronavirus
envelope and the plasma membrane of the epithelial
cell without endosome formation (directly on the
plasma membrane). In any case, the release of the
RNA genome of the virus into the cytosol of the cell is
preceded by proteolytic cleavage of the S1 subunit and
modulation of the S2 subunit of SP by serine proteases
(Bosch et al., 2003; Belouzard et al., 2009; Simmons
et al., 2013; Heurich et al., 2014; Zumla et al., 2016).

In the cytoplasm of the epithelial cell, the RNA
genome of the virus functions as mRNA, when the
replication-transcriptional complex also enables repli-
cation of the RNA genome and the mRNA synthesis
of structural proteins of the viral particle (Sola et al.,
2015; Nakagawa et al., 2016). Following posttransla-
tional glycosylation in the Golgi apparatus cisterns
newly synthesized coronavirus proteins (Nal et al.,
2005; Tseng et al., 2010) enter the cytosol and provide
self-assembly of viral particles, which subsequently
migrate to the cell membrane as part of the vesicles
and leave the cell through exocytosis (Fehr and Perl-
man, 2015; Lim et al., 2016).

Due to the importance of serine proteinases, glyco-
proteins, and glycolipids in the life cycle of influenza
viruses and coronaviruses, it can be assumed that fac-
tors modulating the glycosylation profile of proteins
and lipids of epithelial cells and viruses and controlling
the activity of serine proteinases on the epithelial lin-
ing of the respiratory tract can significantly limit the
virulence of influenza viruses and coronaviruses.
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GENETIC EVOLUTION OF INFLUENZA-A 
VIRUSES AND CORONAVIRUSES

Influenza viruses, when circulating in natural res-
ervoirs, are characterized by high genetic variability,
which is manifested in the formation of quasi-sub-
types (immunologically distinct antigenic variants) of
A viruses (Barbezange et al., 2018). This biological
feature, antigenic drift (Taubenberger and Kash,
2010), is stipulated by the fact that the RNA-depen-
dent RNA polymerase of influenza viruses does not
have an active correction site (Steinhauer et al., 1989;
Cheung et al., 2014). This leads to a high frequency of
point mutations in the course of RNA genome replica-
tion (300 times more often than during the replication
of the bacterial DNA genome) (Drake, 1993). Their
other distinguishing characteristic is a high mutational
tolerance of the envelope glycoproteins of viral parti-
cles, i.e., the ability of HA and NA to maintain func-
tional activity with significant changes in a primary
structure of the polypeptide chain (Thyagarajan and
Bloom, 2014; Visher et al., 2016).

An important and widespread phenomenon in the
evolution of influenza-A viruses is antigenic shift
(Holmes, 2005; Dugan et al., 2008). Antigenic shift is
the exchange of RNA segments of the viral genome
encoding the structure of HA and/or NA in cases of
simultaneous infection of the cell with several strains
of the influenza-A virus (Taubenberger and Kash,
2010). It is antigenic shift that allows new subtypes of
the type-A influenza virus to overcome interspecies
barriers (Scholtissek et al., 1978; Garten et al., 2009).

Unlike other RNA viruses, RNA-dependent RNA
polymerase, which has 3'-exonuclease correcting
activity, is involved in the replication of the coronavi-
rus genome (Smith et al., 2014). In order to evade the
mechanisms of the immunoresponse of the human
body and to preserve the genotype in the Homo sapiens
population, as shown by the example of the HCoV-
OC43 strain, coronaviruses also maintain a state of
antigenic drift (Ren et al., 2015). In addition, the coro-
naviral genome also evolves through RNA-RNA
recombinations (Keck et al., 1988; Huang et al., 2016;
Forni et al., 2017). Homologous RNA recombination
is the redistribution of genetic material by means of the
exchange of regions of the RNA genome of viruses
under conditions of coinfection (Makino et al., 1986;
Lai, 1990; Lai and Cavanagh, 1997). In addition to
aberration of the host immunoresponse mechanisms,
RNA recombination allows coronaviruses to change
the virulence profile and tissue tropism and to over-
come interspecific barriers (Haijema et al., 2003;
Stavrinides and Guttman, 2004).

A high genetic and phenotypic variability of influ-
enza-A viruses and coronaviruses is fraught with the
acquisition of resistance by these pathogens to specific
medical and prophylactic agents, as well as the sudden
appearance of new virulent pandemic strains.
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PANDEMIC OF RESPIRATORY VIRAL 
INFECTIONS AND THE PROBLEM

OF PNEUMONIA

The influenza pandemic of 1918–1920, the most
fatal event in the history of mankind, carried away
lives of more than 50 million people (Johnson and
Mueller, 2002). Mortality during pandemics of influ-
enza and coronaviruses is, to a large extent, associated
with pneumonia (Morens et al., 2008; Metersky et al.,
2012; Yin and Wunderink, 2018; Al-Baadani et al.,
2019). Primary viral pneumonias are often compli-
cated by bacterial coinfection, i.e., they turn into viral-
bacterial and bacterial pneumonias (Oswald et al.,
1958; Bisno et al., 1971; Palacios et al., 2009; Gill et
al., 2010; Martin-Loeches et al., 2011; Cilloniz et al.,
2012). Therefore, there is a widespread opinion among
infectious disease specialists that was formulated by
Louis Cruvellier in 1919: “Si la grippe condamne, la
surinfection exécute, a-ton dit avec raison” (Cru-
veilhier, 1919, 448 p.).

At the same time, the clinical picture of severe viral
respiratory infections is often represented by a symp-
tom complex of primary viral pneumonia. The emer-
gence of primary viral pneumonia during respiratory
viral infections is apparently associated with the
copresentation of glycoproteins and glycolipids. They
differ in the presence of glycans with terminal α2,3-
linked sialic acid (which acts as a receptor for respira-
tory viruses), with the transmembrane serine protein-
ase TMPRSS2 (which proteolytically activates HA
and SP of virions) on the plasma membranes of epi-
thelial cells of alveoli and bronchioles (Ibricevic et al.,
2006; Shinya et al., 2006; Kumlin et al., 2008; Bertram
et al., 2010; Limburg et al., 2019; Tortorici et al.,
2019).

The formation of a susceptibility to bacterial coin-
fection during respiratory viral pandemics is associ-
ated with many factors, such as

— a virus-induced dysbiotic state and impaired
barrier function of the epithelial lining of the respira-
tory tract (Pittet et al., 2010; Ellis et al., 2015; Nita-
Lazar et al., 2015; Hanada et al., 2018; Sencio et al.,
2020);

— virus-induced dysfunction of the effector cells of
the immune system (McNamee and Harmsen, 2006;
Small et al., 2010; Ghoneim et al., 2013; Sun and
Metzger, 2014) and the immunosuppressive activity of
cytokines in relation to antibacterial immunity (van
der Sluijs et al., 2004; Cao et al., 2014; Shepardson
et al., 2019);

— virus-associated dysfunction of the alveolar-
capillary barrier (McAuley et al., 2007; Henkel et al.,
2010; Short et al., 2016; Kamal et al., 2017) and sup-
pression of the activity of ion pumps that ensure the
absorption of f luid from the lumen of the alveoli
(Carlson et al., 2010; Peteranderl et al., 2016; Brand
et al., 2018).
BIO
Pneumonia associated with respiratory viral infec-
tions is an independent factor in the severity of disease
and mortality (Maruyama et al., 2016; Ishiguro et al.,
2017). So, to a large extent, the main problem of severe
viral infections, both in the past and the present, is a
problem of viral, viral-bacterial, and secondary bacte-
rial pneumonias.

BASIS FOR DIRECTIONS
OF PATHOGENETIC THERAPY

The biology of influenza viruses and coronaviruses
inevitably leads to the emergence of new pandemic
strains, and their time of occurrence, genetic charac-
teristics and antigenic properties cannot be predicted.
That is, pandemics of new respiratory infections will
always begin in the absence of specific immune pro-
phylaxis and therapy for these infections. The latter
predetermines the need for an early search and devel-
opment of pathogenetic agents and methods for the
prevention/therapy of respiratory viral infections in
terms of biology of coronaviruses and influenza-A
viruses.

The nature of RNA viruses suggests the effective-
ness of systemic administration of interferon prepara-
tions (viferon, intron A, reaferon, etc.) for baseline
nonspecific therapy for the infections caused by them,
with allowance for the asthenization caused by medi-
cines. The effectiveness of topical administration of
interferon solutions is doubtful and can be considered
in the presence of local symptoms (rhinitis, pharyngi-
tis, etc.). The use of interferon inducers (amixin,
cycloferon, neovir, etc.) involves the formation of sec-
ondary immunosuppression in 10–14 days, which can
lead to reinfection in the ongoing epidemic period.
The drugs of basic antiviral therapy also include tar-
geted agents that affect the replication of the viral
genome: oseltamivir, triazavirin, and ribavirinum,
which is the strongest but also the most toxic of the
drugs in this group. There are also targeted antiviral
agents (lopinavir, ritonavir, nelfinavir) (Yamamoto
et al., 2020). Antireplicative activity was traced for the
purine derivative, isoprinosine, which is active against
influenza-A and -B viruses.

Up-to-date knowledge about the nature of viruses
and the formation of the infectious process makes it
possible to consider the possibility of widespread use
of pathogenetic therapy, the effectiveness of which has
been traced in various studies.

It is known that serine proteinases are involved in
the provision of internalization of coronaviruses and
influenza-A viruses into epithelial cells (Simmons
et al., 2013; Garten et al., 2015). The activity of tryp-
sin-like proteinases tract largely depends on the activ-
ity of secretory inhibitors of leukoproteinases in the
upper respiratory and on the surfactant in the lower
regions (Kido et al., 2004). Thus, drugs that have the
ability to induce the expression of inhibitors of secre-
LOGY BULLETIN REVIEWS  Vol. 11  No. 2  2021
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tory leukoproteinases and surfactant and their direct
inhibitors can significantly inhibit the multicyclic rep-
lication of RNA viruses.

Quercetin has all these properties. In addition to its
antioxidant effects, e.g., chelation of metals of variable
valence (Gholampour and Saki, 2019), stimulation of
the expression of antioxidant enzymes (Chen et al.,
2017), a direct reduction of free radicals of fatty acid
residues of phospholipids and oxidized forms of vita-
min E (Chepur and et al., 2020; Ozgen et al., 2016),
quercetin in the micromolar concentration range
inhibits the activity of serine proteinases (Xue et al.,
2017; Jo et al., 2019) and shields the active center of
HA of the influenza-A virus (Wu et al., 2015), which
gives it a wide range of antiviral effects (Zakaryan et
al., 2017).

Trans-4-[[(2-amino-3,5-dibromophenyl)methyl]-
amino]cyclohexanol hydrochloride (as ambroxol or
lazolvan) is also gaining attention as an antiviral
adjunct (Yang et al., 2002; Yamaya et al., 2014). The
spectrum of pharmacological activity of ambroxol, in
addition to its mucolytic effect (Rogers, 2007),
includes

— antibacterial and antibiofilm effects (Lu et al.,
2010; Li et al., 2011; Cabral-Romero et al., 2013; Cat-
aldi et al., 2014);

— the ability to exhibit the activity of a chemical
chaperone (Bendikov-Bar et al., 2013; Sanchez-Mar-
tinez et al., 2016), a modulator of surfactant secretion
(Yang et al., 2002; Seifart et al., 2005), and to provide
anti-inflammatory (Gibbs et al., al., 1999; Beeh et al.,
2008; Gupta, 2010) and antioxidant action (Nowak
et al., 1994; Štětinová et al., 2004);

— the ability to (respiratory organs) stimulate
locally the secretion of immunoglobulins IgA and IgG
(Yang et al., 2002) and to provide a local anesthetic
effect (Kern and Weiser, 2015).

Ambroxol, which possesses the listed properties and
is characterized by high bioavailability when adminis-
tered perorally (Jauch et al., 1978), can be included in
the list of drugs used to treat viral pneumonia.

Virus-induced oxidative stress plays a significant
role in the pathogenesis of respiratory infections
(Schwarz, 1996; Lin et al., 2006; Liu et al., 2017; Kho-
mich et al., 2018). Xanthine oxidoreductase (XOR)
plays a leading role in the formation of a symptom
complex of manifestations and complications of virus-
associated pneumonia. XOR is a cytosolic enzyme of
purine catabolism (Frederiks and Vreeling-Sin-
delárová, 2002; Agarwal et al., 2011). Its activity rap-
idly increases under hypoxic conditions (Poss et al.,
1996; Terada et al., 1997; Linder et al., 2003) and
under the influence of pro-inflammatory mediators
and cytokines (Page et al., 1998; Brandes et al., 1999).
Under pathological conditions, XOR is released from
cells into blood (the oxidase form of the enzyme pre-
dominates) (Spiekermann et al., 2003) and is fixed on
the luminal surface of the plasma membrane of endo-
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theliocytes in the inflammation zone through physi-
cochemical interaction with glycosaminoglycans
(Rouquette et al., 1988; Akaike et al., 1990; Adachi et
al., 1993). XOR, which is localized on the cytoplasmic
membrane of endothelial cells, produces a superoxide
radical anion during purine oxidation and can simul-
taneously reduce nitrite and nitrate anions to nitric
oxide NO• at another active site (Jansson et al., 2008;
Cantu-Medellin and Kelley, 2013), i.e., it can recycle
this vasodilating agent. The local production of the
complex of prooxidants , H2O2, NO• and ONOO–

is potentially very dangerous, especially in the vascular
bed of lungs. However, attempts to use the XOR inhib-
itor allopurinol (Pacher et al., 2006; George and
Struthers, 2009) as a therapeutic agent for pneumonia
induced by type-A influenza virus in the range of daily
doses of 5–50 mg/kg were unsuccessful. Allopurinol
had no effect on the course and the outcomes of viral
infection (Dolganova and Sharonov, 1997), because
the NADH oxidase and nitrite/nitrate reductase activ-
ities of XOR, which are realized by the FAD-depen-
dent enzyme site, is not affected when the molyb-
dopterin-containing center of the enzyme is inhibited
by allopurinol (Harris and Massey, 1997; Doel et al.,
2001; Boueiz et al., 2008). Since there are still no drugs
that can inhibit the FAD-dependent activity of XOR,
the prescription of heparin, which releases XOP from
the connection with glycans and promotes its elimina-
tion from the focus of inflammation, is advised in
order to prevent pulmonary thromboembolism and to
desorb the enzyme from the cytoplasmic membrane of
endothelial cells heparin (Povalyaev, 2014; Obi et al.,
2019).

Mitochondria are another significant source of
reactive oxygen species and metabolites in respiratory
viral infections (To et al., 2020). Melatonin as a mito-
chondrial antioxidant (Reiter et al., 2017) that exhibits
anti-inflammatory and immunomodulatory effects,
has a pronounced beneficial effect on the course and
outcomes of viral infections in the experiment (Srini-
vasan et al., 2012; Silvestri and Rossi, 2013; Tan et al.,
2014; Huang et al., 2019; Zhang et al., 2020).

The superoxide radical anion with respect to
organic and inorganic chemical compounds, depend-
ing on their chemical nature, can play the role of both
an oxidizing agent (E0 /H2O2 = +0.89 V) and a

reducing agent (E0 O2/  = –0.16 V) (Wood, 1987,
1988). The reducive properties of the superoxide radi-
cal produced in pessimal amounts during viral pneu-
monia in the inflammation zone determine the possi-
bility, in particular, of the reduction of iron ions and
their release from complexes with biomacromolecules.
For example, in the ferritin composition, iron is pre-
sented in the form of Fe3+ ions, which, under the
influence of the superoxide radical anion, become
Fe2+ and leave the above protein (Biemond et al.,
1984; Bolann and Ulvik, 1987). In the presence of free
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iron ions and partially reduced oxygen species, condi-
tions arise for the functioning of a kind of catalytic
reactor for the redox catabolic production of prooxi-
dants and, in particular, an extremely toxic hydroxyl
radical (Morris et al., 1995). This is also an extremely
dangerous state of the biological system, because bio-
logical f luids in the presence of free iron ions lose their
antibacterial properties (Bullen et al., 1991; Griffiths,
1991; Sritharan, 2006).

The removal of free iron ions from biological media
of the organism is a matter of life and death in the
course of viral pneumonia. However, attempts to use
available chelators (deferoxamine) to bind iron ions in
viral pneumonia not only did not have a positive effect
on the course of the pathological process, but, con-
trary to expectations, increased mortality (Dolganova
and Sharanov, 1997). The explanation for this paradox
is that deferoxamine (desferal), which has an affinity
constant for iron ions approximately equal to the sid-
erophores of microorganisms (Hallaway et al., 1989;
Askwith et al., 1996), is not able to limit the availability
of Fe3+ for pathogenic microorganisms (Kim et al.,
2007; Cassat and Skaar, 2013). At the same time, iron
ions chelated with deferoxamine apparently do not
completely lose the ability to undergo redox transfor-
mations and, thus, secure the course of the Fenton
and Osipov reactions (Borg and Schaich, 1986; Kle-
banoff et al., 1989; Dulchavsky et al., 1996; Niihara et
al., 2002; Francisco et al., 2010).

In contrast, 2-ethyl-6-methyl-3-hydroxypyridine
succinate (mexidol, emoxipine) is characterized by a
pronounced iron-chelating effect (Andrusishina et al.,
2015), antioxidant activity (Voronina, 2001), and the
properties of an inhibitor of serine and matrix protein-
ases (Zolotov et al., 1989; Akhmedov et al., 2009).
With such a list of biological effects, Mexidol can be
effectively used as an adjunct in the treatment of pneu-
monia (Ilyashenko et al., 2003; Luzhnikov et al.,
2006) and viral infections (Laseeva, 2009; Pavelkina,
2010).

Chloroquine (in the form of phosphate, hydro-
chloride or sulfate) has been widely used in clinical
practice for more than seven decades, since 1947 (Sol-
omon and Lee, 2009), as a safe, effective and afford-
able drug:

— for the prevention and treatment of malaria
(Mengesha and Makonnen, 1999; Bello et al., 2010;
Waqar et al., 2016);

— in the treatment of leprosy (Meinao et al., 1996;
Bezerra et al., 2005; Gordon et al., 2018);

— as an anti-inflammatory agent in the treatment
of rheumatoid arthritis (Augustijns et al., 1992;
Schrezenmeier and Dorner, 2020);

— in a treatment for antiphospholipid syndrome
(Tektonidou et al., 2019);

— in the treatment of Sjogren’s syndrome (Vivino
et al., 2016; Shivakumar et al., 2018; Lee et al., 2019);
BIO
— in the treatment of amoebic hepatitis and liver
abscesses (Sodeman et al., 1951; Cohen and Reynolds,
1975);

— in the treatment of malignant neoplasms as a
means of sensitization (Solomon and Lee, 2009; May-
cotte et al., 2012; Kimura et al., 2013);

— in the treatment of metabolic syndrome (Kastan
et al., 2007; McGill et al., 2019) and inflammatory
diseases of bacterial etiology (as a synergist of antibiot-
ics) (Crowle and May, 1990; Feurle et al., 2012; Son
and Chung, 2014).

Chloroquine and its analogs (Delagil, Plaquenil,
Immard, Mefloquine, etc.), which exhibit the proper-
ties of weakly alkaline amines, easily overcome cell
membranes in a nonprotonated form (Chinappi et al.,
2010) and, after undergoing protonation, accumulate
in closed cell compartments with acidic pH values
(endosomes, lysosomes) (Vincent et al., 2005). The
chloroquine level in them can be more than two orders
of magnitude higher than its concentration outside the
cell (De Duve et al., 1974). Without entering into bio-
transformation reactions, chloroquine can remain in
isolated intracellular compartments for hundreds of
hours (Schrezenmeier and Dorner, 2020).

Chloroquine accumulates in endosomes/lyso-
somes, shifts the pH value towards the basic values
(Homewood et al., 1972; Ohkuma and Poole, 1978;
Al-Bari, 2017), and inhibits various ATPases, includ-
ing H+-ATPase (V-ATPase), which determines the
acidification of the of endosomes and cisterns of the
Golgi apparatus (Chandra et al., 1992; Bhattacharyya
and Sen, 1999; Holliday, 2017). It is possible that the
above mentioned phenomena determine the block of
release of fragments of the RNA genome of influenza
viruses from lipoproteins of their envelope (Shibata et
al., 1983), which leads to the suppression of virion rep-
lication (Ooi et al., 2006; Di Trani et al., 2007).

The ability of chloroquine to inhibit the acidifica-
tion of endosomes containing respiratory viruses, and
thus block the release of their RNA genomes and sub-
sequent replication are difficult to accept as a satisfac-
tory explanation for its antiviral activity. The fact is
that chloroquine exhibits high antiviral activity not
only against influenza A viruses (internalization in
endosomes) but also against coronaviruses (Keyaerts
et al., 2004; Vincent et al., 2005; Ooi et al., 2006; Yan
et al., 2013; De Wilde et al., 2014; Kearney, 2020).
Their internalization almost exclusively occurs by
means of membrane fusion, i.e., without the stage of
endosome formation (Matsuyama et al., 2005).

Among the three types of biological aperiodic
polymers (nucleic acids, polypeptides, carbohy-
drates), aperiodic carbohydrate polymers (glycans,
oligosaccharides) are distinguished by the highest
information capacity due to their structural features.
This provides a high specificity of ligand-receptor
interactions of oligosaccharide conjugates. However,
the structure of glycans is encoded in the eukaryotic
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genome not directly but indirectly. Oligosaccharides
are synthesized in the cisterns of the Golgi apparatus
with the participation of secondary protein matrices
that form functional heterogeneous associations (con-
veyor lines) of glycosyltransferases (Chepur et al.,
2019). Naturally, the spatial structure of such matrix
protein molecules and, consequently, their affinity for
enzymes of glycan synthesis can rapidly and signifi-
cantly change under the influence of the dynamics of
the pH values and the redox potential of the cistern
medium of the Golgi apparatus.

Therefore, it is significant that chloroquine is able
to change the redox status of the cell (Giovanella et al.,
2015) and to decrease the proton concentration
(increase the pH value) in the lumen of the cisterns of
the Golgi apparatus by suppressing the activity of
ATPases, including H+-ATPase (Reaves and Banting,
1994; Hassinen et al., 2011). It is considered that the
most sensitive to the dynamics of pH value function of
the Golgi apparatus is the synthesis of aperiodic oligo-
saccharides (Kellokumpu, 2019): an increase in pH by
0.2 units in the lumen of cisterns of the Golgi complex
is accompanied by a violation of terminal α2,3-sialyla-
tion of both N-linked and O-conjugated glycans (Riv-
inoja et al., 2006, 2009). Aberrant glycosylation with a
decrease in the acidity of the intraluminal medium of
the cisterns of the Golgi complex is apparently associ-
ated with a pH-induced change in the topology/posi-
tion of glycosyltransferases in the multienzyme com-
plexes of the synthesis of aperiodic oligosaccharides.

Since all participants in the interaction of human
body cells with respiratory RNA viruses (glycopro-
teins, glycolipids) contain an ample number with gly-
cans with terminal sialic acids, which serve as specific
receptors for viral particles, the chloroquine-induced
disruption of sialylation/glycosylation processes of
cellular and viral participants in this interaction deter-
mines the antiviral the effect of drugs in this group.

The involvement of glycans in viral adhesion and
replication is extremely important. It should be noted
that a number of viruses, including coronaviruses
(Milewska et al., 2014, 2018; Szczepanski et al., 2019),
use a common heparan sulfate-dependent mechanism
of attachment to the cell membrane. Derivatives of
dyspirotripiperazine that inhibit the replication of
viruses of various families that use heparan sulfate to
attach and/or penetrate into the host cell have been
obtained (Makarov et al., 2016; Novoselova et al.,
2019). The class of compounds involved opens up new
possibilities for the inhibition of the process of viral
transmission, which has been experimentally proven
in a model of infection with the herpes simplex virus of
the first type.

A technique used for the prevention/therapy of
aspiration and ventilator-associated pneumonia can
be adapted for the treatment of virus-associated pneu-
monia. The main point of the technique is to create a
hypoosmotic (up to 200–250 mmol/L) medium for
BIOLOGY BULLETIN REVIEWS  Vol. 11  No. 2  2021
autoblood erythrocytes in a solution of a broad spec-
trum antibiotic with the addition of dimethyl sulfoxide
and heparin. The latter is used to improve the rheolog-
ical properties of blood, to desorb XOR from the lumi-
nal surface of endothelial cells, and to remove it from
the inflammatory focus. Implementation of the
approach makes it possible to avoid hemolysis and,
when injected intravenously, to use autoblood eryth-
rocytes as a depot for the targeted delivery of drugs to
the inflammatory focus, in particular, to the pneumo-
nia focus where they are released. Dimethyl sulfoxide
in generally used amounts (0.3–0.4 mL) increases the
fluidity (reduces microviscosity) and permeability of
cell (erythrocyte) membranes and promotes cellular
penetration by the antibiotic without any adverse
effects on the structure and functional characteristics
of the blood corpuscles (Gurtovenko and Anwar,
2007). Moreover, dimethyl sulfoxide inhibits the acti-
vation of pro-inflammatory transcription factors NF-
kB, AP-1 and the expression of the adhesion molecules
ICAM-1 (Chang et al., 2001), blocks the transcription
of interleukin genes IL-1, -6, and -8 an the activation
of NLRP3 by inflammas (Ahn et al., 2014; Elisia et al.,
2016), and has a pronounced antioxidant activity at
extremely low concentrations (Jia et al., 2010;
Sanmartin-Suarez et al., 2011).

Up-to-date knowledge of antibiotic properties
makes it possible to select drugs with effects that are
not associated with bacteriolysis or the release of
pathogen-associated molecular patterns (Tauber and
Nau, 2008) and those that can implemented without
activation of the effector functions of polymorphonu-
clear leukocytes (Rahman and Mazumder, 2001),
their chemotaxis (Burgaleta et al., 1982), or an
increase in the activity of neutrophil NADPH oxidase
(Umeki, 1995; Dutta et al., 2009).

CONCLUSIONS
Respiratory RNA viruses are anthropozoonotic

infectious pathogens that have natural reservoirs of
infection and form a single dynamic gene pool. A sin-
gle gene pool involves the exchange of genetic material
between the genomes of related human and animal
RNA viruses. This inevitably leads to the emergence of
new, highly virulent strains of pathogens, the time of
occurrence and antigenic properties of which cannot
be predicted. That is, epidemics of new, respiratory,
RNA viral infections will always begin in the absence
of drugs for immune prophylaxis and treatment for
these infections. The latter predetermines the need for
the early search and development of effective means
and methods of pathogenetic prevention/therapy for
respiratory RNA viral infections.
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