Skip to main content
Log in

Synthesis and Characterisation of Transition Metal Iron Oxide Nanocomposite Crystals and Particles Using Wet Chemical Coprecipitation Method

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Magnetic nanomaterials showing unique magnetic behaviour have spread their potential applications in various fields. Iron oxide nanomaterials have been developed for their unique properties that they develop at extremely small size. The high surface area to volume ratio, enhanced surface properties, excellent magnetic property with better biocompatibility are the most promising properties of iron oxide nanoparticles (NPs). Hence development of bio-friendly and less toxic iron oxide NPs is the key point of research in recent years. Most importantly, unique physical and chemical properties of magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3) are significantly important in the field of technological and biological applications. At nanoscale transition metal iron oxide develops superparamagnetism, which is very important and promising for biomedical applications. In the current study Magnetite (Fe3O4) phase of iron oxide has been prepared in the laboratory using the coprecipitation method. In this study less expensive and widely used experimental setup has been designed to observe the size effect in magnetic iron oxide nanoparticles. The structural information was obtained using X-ray diffraction (XRD). XRD result showed the presence of peaks corresponding to magnetite (Fe3O4) phase of iron oxide. The morphology of the particles was studied using Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Magnetic properties were studied using vibrating sample magnetometer (VSM). Theoretical discussion on superparamagnetism has also been done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tevhide, O., Muhammet, S.T., Abdulhadi, B., Huseyin, K., Yuksel, K., and Bekir, A., J. Alloys Compd., 2009, vol. 472, p. 18.

    Article  Google Scholar 

  2. LaConte, L., Nitin, N., and Bao, G., Mater. Today, 2005, vol. 8, p. 32.

    Article  Google Scholar 

  3. Rufus, A., Sreeju, N., and Philip, D., RSC Adv., 2016, vol. 6, p. 94206.

    Article  CAS  Google Scholar 

  4. Majewski, P. and Thierry, B., Recent Pat. Mater. Sci., 2008, vol. 1, p. 116.

    Article  CAS  Google Scholar 

  5. Francis, R., Joy, N., Aparna, E.P., and Vijayan, R., Polym. Rev., 2014, vol. 54, p. 268.

    Article  CAS  Google Scholar 

  6. Dictor, R.A. and Bell, A.T., J. Catal., 1986, vol. 97, p. 121.

    Article  CAS  Google Scholar 

  7. Dhara, S., Rastogi, A.C., and Das, B.K., J. Appl. Phys., 1993, vol. 74, p. 7019.

    Article  CAS  Google Scholar 

  8. Ai. H., Flask, C., Weinberg, B., Shuai, X.T., Pagel, M.D., Farrel, D., et al., Adv. Mater., 2005, vol. 17, p. 1949.

  9. Song, H.T., Choi, J.S., Huh, Y.M., Kim, S., Jun, Y.W., Suh, J.S., et al., J. Am. Chem. Soc., 2005, vol. 127, p. 9992.

    Article  CAS  Google Scholar 

  10. Lee, N. and Hyeon, T., Chem. Soc. Rev., 2012, vol. 41, p. 2575.

    Article  CAS  Google Scholar 

  11. Majewski, P. and Thierry, B., Crit. Rev. Solid State Mater. Sci., 2007, vol. 32, p. 203.

    Article  CAS  Google Scholar 

  12. Lübbe, A.S., Bergemann, C., Huhnt, W., Fricke, T., Riess, H., Brock, J.W., et al., Can. Res., 1996, vol. 56, p. 4694.

    Google Scholar 

  13. Cheng, F.-Y., Su, C.-H., Yang, Y.-S., Yeh, C.-S., Tsai, C.-Y., Wu, C.-I., et al., Biomaterials, 2005, vol.26, p. 729.

    Article  CAS  Google Scholar 

  14. Sivula, K., Formal, F.L., and Grotzel, M., ChemSusChem, 2011, vol. 4, p. 432.

    Article  CAS  Google Scholar 

  15. Cabanas-Polo, S., Distaso, M., Peukert, W., and Bocaccini, A.R., J. Nanosci. Nanotechnol., 2015, vol. 15, p. 10149.

    Article  CAS  Google Scholar 

  16. Issa, B., Obaidat, I.M., Albiss, B.A., and Haik, Y., Int. J. Mol. Sci., 2013, vol. 14, p. 21266.

    Article  CAS  Google Scholar 

  17. Mohapatra, M. and Anand, S., Int. J. Eng. Sci. Technol., 2010, vol. 2, p. 127.

    Google Scholar 

  18. Cornell, R.M. and Schwertmann, U., The Iron Oxides: Structures, Properties, Reactions, Occurrences and Uses, Weinheim: Wiley-VCH, 2003.

    Book  Google Scholar 

  19. Wu, W., He, Q., and Jiang, C., Nano. Res. Lett., 2008, vol. 3, p. 397.

    Article  CAS  Google Scholar 

  20. Ganapathe, L.S., Mohamed, M.A., Yunus, R.M., and Berhanuddin, D.D., Magnetochemistry, 2020, vol. 6, p. 68.

    Article  CAS  Google Scholar 

  21. Wang, Z., Lee, Y.H., Wu, B., Horst, A., Kang, Y., Tang, Y.J., et al., Chemosphere, 2010, vol. 80, p. 525.

    Article  CAS  Google Scholar 

  22. Astanina, K., Simon, Y., Cavelius, C., Petry, S., Kraegeloh, A., and Kiemer, A.K., Acta Biomater., 2014, vol. 10, p. 4896.

    Article  CAS  Google Scholar 

  23. Jha, D.K., Shameen, M., Patel, A.B., Kostka, A., Schneider, P., Erbe, A., et al., Mater. Lett., 2013, vol. 95, p. 186.

    Article  CAS  Google Scholar 

  24. Unni, M., Uhl, A.M., Savliwala, S., Savitzky, B.H., Dhavalikar, R., Garraud, N., et al., ACS Nano, 2017, vol. 11, p. 284.

    Article  Google Scholar 

  25. Kong, L., Gan, X., Bin Ahmad, A.L., Hamed, B.H., Evarts, E.R., Ooi, B., et al., Chem. Eng. J. Biochem. Eng. J., 2012, vol. 197, p. 350.

    CAS  Google Scholar 

  26. Niemirowicz, K., Markiewicz, K.H., Wilczewska, A.Z., and Car, H., Adv. Med. Sci., 2012, vol. 57, p. 196.

    Article  CAS  Google Scholar 

  27. Gu, H., Xu, K., Xu, C., and Xu, B., Chem. Commun., 2006, vol. 9, p. 941.

    Article  Google Scholar 

  28. Lu, A.-H., Salabas, E.I., and Schuth, F., Angew. Chem., Int. Ed., 2007, vol. 46, p. 1222.

    Article  CAS  Google Scholar 

  29. Liu, X., Kaminski, M.D., Guan, Y., Chen, H., Liu, H., and Rosengart, A.J., J. Magn. Magn. Mater., 2006, vol. 306, p. 248.

    Article  CAS  Google Scholar 

  30. Ahmadi, S., Chia, C.H., Zakaria, S., Saeedfar, K., and Asim, N., J. Magn. Magn. Mater., 2012, vol. 324, p. 4147.

    Article  CAS  Google Scholar 

  31. Sena, S.P., Lindley, R.A., Blythe, H.J., Sauer, C., Al-Kafarji, M., and Gehring, G.A., J. Magn. Magn. Mater., 1997, vol. 176, p. 111.

    Article  CAS  Google Scholar 

  32. Qiu, H., Pan, L., Li, L., Zhu, H., Zhao, X., Xu, M., et al., J. Appl. Phys., 2007, vol. 102, p. 113913.

    Article  Google Scholar 

  33. Feltin, N. and Pileni, M.P., Langmuir, 1997, vol. 13, p. 3927.

    Article  CAS  Google Scholar 

  34. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander, E.L., et al., Chem. Rev., 2008, vol. 108, p. 2064.

    Article  CAS  Google Scholar 

  35. Wu, W., Wu, Z., Yu, T., Jiang, C., and Kim, W.-S., Sci. Technol. Adv. Mater., 2015, vol. 16, p. 023501.

    Article  Google Scholar 

  36. Ravikumar, C. and Bandyopadhyaya, R., J. Phys. Chem. C, 2011, vol. 115, p. 380.

    Article  Google Scholar 

  37. Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., et al., Nat. Mater., 2004, vol. 3, p. 891.

    Article  CAS  Google Scholar 

  38. Lemine, O.M., Omri, K., Iglesias, M., Velasco, V., Crespo, P., De, L.P.P., et al., J. Alloys Compd., 2014, vol. 607, p. 125.

    Article  CAS  Google Scholar 

  39. Okoli, C., Sanchez-Dominguez, M., Boutonnet, M., Jaras, S., Civera, C., Solans, C., et al., Langmuir, 2012, vol. 28, p. 8479.

    Article  CAS  Google Scholar 

  40. Ozel, F. and Kockar, H., J. Magn. Magn. Mater., 2015, vol. 373, p. 213.

    Article  CAS  Google Scholar 

  41. Ramimoghadam, D., Bagheri, S., Hamid, S.B.A., J. Magn. Magn. Mater., 2014, vol. 368, p. 207.

    Article  CAS  Google Scholar 

  42. Liu, H.-L., Ko, S.P., Wu, J.-H., Jung, M.-H., Min, J.H., Lee, J.H., et al., J. Magn. Magn. Mater., 2007, vol. 310, p. 815.

    Article  Google Scholar 

  43. Hong, R.Y., Li, J.H., Qu, J.M., Chen, L.L., and Li, H.Z., Chem. Eng. J., 2009, vol. 150, p. 572.

    Article  CAS  Google Scholar 

  44. Hong, R.Y., Feng, B., Chen, L.L., Liu, G.H., Li, H.Z., Zheng, Y., et al., Biochem. Eng. J., 2008, vol. 42, p. 290.

    Article  CAS  Google Scholar 

  45. Boyer, C., Whittaker, M.R., Bulmus, V., Liu, J., and Davis, T.P., NPG Asia Mater., 2010, vol. 2, p. 23.

    Article  Google Scholar 

  46. Sheng-Nan, S., Chao, W., Zan-Zan, Z., Yang-Long, H., Venkatraman, S.S., and Zhi-Chuan, X., Chin. Phys. B, 2014, vol. 23, p. 037503.

    Article  Google Scholar 

  47. Fried, T., Shemer, G., and Markovich, G., Adv. Mater., 2001, vol. 13, p. 1158.

    Article  CAS  Google Scholar 

  48. Safari, J., Zarnegar, Z., and Heydarian, M., Bull. Chem. Soc. Jpn., 2012, vol. 85, p. 1332.

    Article  CAS  Google Scholar 

  49. Okuda, M., Takeguchi, M., Ruairc, O., Tagaya, M., Zhu, Y., Hashimoto, A., et al., J. Electron Microsc., 2009, vol. 59, p. 173.

    Article  Google Scholar 

  50. Fadli, A., Komalansari, A.A., Iwantono, R., and Addabsi, A.S., IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 622, p. 012013.

  51. Kim, M., Jung, J., Lee, J., Na, K., Park, S., and Hyun, J., Colloids Surf., B, 2010, vol. 76, p. 236.

    Article  CAS  Google Scholar 

  52. Yuan, J.J., Armes, S.P., Takabayashi, Y., Prassides, K.C.A., Leite, P., Galembeck, F., et al., Langmuir, 2006, vol. 22, p. 10989.

    Article  CAS  Google Scholar 

  53. Petcharoen, K. and Sirivat, A., Mater. Sci. Eng., B, 2012, vol. 177, p. 421.

    Article  CAS  Google Scholar 

  54. Tai, M.F., Lai, C.W., Hamid, S.B.A., Suppiah, D.D., Lau, K.S., Yehyu, W.A., et al., Mater. Res. Innovations, 2014, vol. 18, p. 470.

    Article  Google Scholar 

  55. Baumgartner, J., Dey, A.A., Bomans, P.H.H., Le Coadou, C., Fratzl, P., Sommerdijk, N.A.J.M., et al., Nat. Mater., 2013, vol. 12, p. 310.

    Article  CAS  Google Scholar 

  56. Thanh, N.T.K., MacLean, N., and Mahiddine, S., Chem. Rev., 2014, vol. 114, p. 7610.

    Article  CAS  Google Scholar 

  57. Wieszczycka, K., Staszak, K., Wozniak-Budych, M.J., Litowczenko, J., Maciejejewska, B.M., and Jurga, S., Coord. Chem. Rev., 2021, vol. 436, p. 213846.

    Article  CAS  Google Scholar 

  58. Alexandrov, D.V., Ivanov, A.A., and Alexandrova, I.V., J. Phys. A: Math. Theor., 2018, vol. 52, p. 15101.

    Article  Google Scholar 

  59. Mamania, J.B., Costa-Filhob, A.J., Cornejoc, D.R., Vieirad, E.D., and Gamarraa, L.F., Mater. Charact., 2013, vol. 81, p. 28.

    Article  Google Scholar 

  60. Si, S., Kotal, A., Mandal, T.K., Giri, S., Nakamura, H., and Kohara, T., Chem. Mater., 2004, vol. 16, p. 3489.

    Article  CAS  Google Scholar 

  61. Geng, B.Y., Ma, J.Z., and You, J.H., Cryst. Growth Des., 2008, vol. 8, p. 1443.

    Article  CAS  Google Scholar 

  62. Roca, A.G., Morales, M.P.K., O’Grady, K., and Serna, C.J., Nanotechnology, 2006, vol. 17, p. 2783.

    Article  CAS  Google Scholar 

  63. Lida, H., Takayanagi, K., Nakanishi, T., and Osaka, T., J. Colloid Interface Sci., 2007, vol. 314, p. 274.

    Article  Google Scholar 

  64. Gnanaprakash, G., Mahadevan, S., Jayakumar, T., Kalyanasundaram, P., Philip, J., and Raj, B., Mater. Chem. Phys., 2007, vol. 103, p. 168.

    Article  CAS  Google Scholar 

  65. Zhang, L., He, R., and Gu, H.C., Appl. Surf. Sci., 2006, vol. 253, p. 2611.

    Article  CAS  Google Scholar 

  66. Grancharov, S.G., Zeng, H., Sun, S., Wang, S.X., O’Brien, S., Murray, C.B., et al., J. Phys. Chem. B, 2005, vol. 109, p. 13030.

    Article  CAS  Google Scholar 

  67. Jun, Y.W., Huh, Y.M., Choi, J.S., Lee, J.H., Song, H.T., Kim, S., et al., J. Am. Chem. Soc., 2005, vol. 127, p. 5732.

    Article  CAS  Google Scholar 

  68. Yavuz, C.T., Mayo, J.T., Yu, W.W., Prakash, A., Falkner, J.C., Yean, S., et al., Science, 2006, vol. 314, p. 964.

    Article  Google Scholar 

  69. Guimaraes, A.P., Principles of Nano-Magnetism. NanoScience and Technology, Berlin, Heidelberg: Springer, 2009.

    Google Scholar 

  70. Goll, D., Berkowitz, A.E., and Bertram, H.N., Phys. Rev. B, 2004, vol. 70, p. 184432.

    Article  Google Scholar 

  71. Bean, C.P. and Livingston, J.D., J. Appl. Phys., 1959, vol. 30, p. 120.

    Article  Google Scholar 

  72. Nanoparticles: From Theory to Application, Schmid, G., Ed., Wiley-VCH, 2004.

    Google Scholar 

  73. Yang, C., Hou, Y.L., and Gao, S., Chin. Phys. B, 2014, vol. 23, p. 057505.

    Article  Google Scholar 

  74. Neel, L.C.R., Hebd. Seances Acad. Sci., 1949, vol. 5, p. 99.

    Google Scholar 

  75. Coffey, W.T., Crothers, D.S., Dormann, J.L., Geoghegan, L.J., Kalmykov, Y.P., Waldron, J.T., et al., J. Magn. Magn. Mater., 1995, vol. 145, p. 263.

    Article  Google Scholar 

  76. Neel, L., Ann. Geophys., 1949, vol. 5, p. 99.

    Google Scholar 

  77. Nunes, W.C., Socolovsky, L.M., Denardin. J.C., Cebollada, F., Brandl, A.L., and Knobel, M., Phys. Rev. B, 2005, vol. 72, p. 212413.

    Article  Google Scholar 

  78. Stoner, E.C. and Wohlfarth, E.P., IEEE Trans. Magn., 1991, vol. 27, p. 3475.

    Article  CAS  Google Scholar 

  79. O’Grady, K., Chantrell, R.W., and El-Hilo, M., J. Magn. Magn. Mater., 1992, vol. 117, p. 21.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks lovely Professional University, Punjab, India and IISER Bhopal, M.P., India for the instrumental facility and characterization of the samples.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandana Gogoi.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, B. Synthesis and Characterisation of Transition Metal Iron Oxide Nanocomposite Crystals and Particles Using Wet Chemical Coprecipitation Method. Prot Met Phys Chem Surf 59, 1200–1209 (2023). https://doi.org/10.1134/S2070205123701149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123701149

Keywords:

Navigation