Skip to main content
Log in

Possibilities of Regulating the Texture Parameters of Porous Carbon Materials Obtained by Alkaline Dehydrochlorination of Polyvinyl Chloride with Subsequent Heat Treatment of Forming Polyvinylenes

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Synthesis of porous carbon materials has been carried out in two ways—by chemical and mechanochemical dehydrochlorination of polyvinyl chloride in the presence of alkali and subsequent two-stage heat treatment of the obtained polyvinylenes (carbonization up to 400°C and carbon dioxide or alkaline activation at a temperature of 850—900 and 800°C, respectively). The products obtained were studied by transmission electron microscopy and low-temperature nitrogen adsorption. It is shown that, depending on the synthesis conditions, carbon materials after activation have a developed specific surface area of 350–1100 m2/g and specific pore volume 0.3–0.47 cm3/g with a variable contribution of micropores from 30 to 85%. Thus, the effectiveness of the chosen approach to the controlled synthesis of porous CMs from PVC is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kryazhev, Yu.G., Solodovnichenko, V.S., Antonicheva, N.V., et al., Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 4, p. 398. https://doi.org/10.1134/S2070205109040030

    Article  CAS  Google Scholar 

  2. Kryazhev, Yu.G., Solodovnichenko, V.S., Martynenko, E.S., et al., Russ. Chem. Bull., 2015, vol. 64, no. 12, p. 2919. https://doi.org/10.1007/s11172-015-1248-0

    Article  CAS  Google Scholar 

  3. Solodovnichenko, V.S., Kryazhev, Yu.G., Arbuzov, A.B., et al., Russ. Chem. Bull., 2016, vol. 65, no. 11, p. 2712. https://doi.org/10.1007/s11172-016-1640-4

    Article  CAS  Google Scholar 

  4. Solodovnichenko, V.S., Polyboyarov, V.A., Zhdanok, A.A., et al., Procedia Eng., 2016, vol. 152, p. 747.

    Article  CAS  Google Scholar 

  5. Anikeeva, I.V., Kryazhev, Yu.G., Arbuzov, A.B., et al., Russ. J. Appl. Chem., 2018, vol. 91, no. 11, p. 1830. https://doi.org/10.1134/S1070427218110137

    Article  CAS  Google Scholar 

  6. Zhang, Q., Saito, F., Shimme, K., and Masuda, S., J. Soc. Powder Technol., Jpn., 1999, vol. 36, p. 468.

    CAS  Google Scholar 

  7. Inoue, T., Miyazaki, M., Kamitani, M., et al., Adv. Powder Technol., 2005, vol. 16, no. 1, p. 27.

    Article  CAS  Google Scholar 

  8. Inoue, T., Kano, J., and Saito, F., Adv. Powder Technol., 2006, vol. 17, no. 4, p. 425.

    Article  CAS  Google Scholar 

  9. Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption. Texture of Disperse and Porous Materials), Novosibirsk: Nauka, 1999.

  10. Barrett, E.P., Joiner, L.G., and Halenda, P.H., J. Am. Chem. Soc., 1951, vol. 73, p. 373.

    Article  CAS  Google Scholar 

  11. Kryazhev, Yu.G., Anikeeva, I.V., Trenikhin, M.V., et al., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 4, p. 712. https://doi.org/10.31857/S0044185620030237

    Article  CAS  Google Scholar 

  12. Beletskaya, M.G. and Bogdanovich, N.I., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 7, p. 717.

    Article  Google Scholar 

  13. Tamarkina, Yu.V., Kucherenko, V.A., and Shendrik, T.G., Solid Fuel Chem., 2014, vol. 48, no. 4, p. 251. https://doi.org/10.7868/S0023117714040112

    Article  CAS  Google Scholar 

  14. Kozlov, A.P., Zykov, I.Yu., Dudnikova, Yu.N., et al., Vestn. Kuzbasskogo Gos. Tekh. Univ., 2018, no. 5, p. 68.

  15. Perrin, A., Celzard, A., Albiniak, A., et al., Carbon, 2004, vol. 42, p. 2855.

    Article  CAS  Google Scholar 

  16. Wong, S., Ngadi, N., Inuwa, I.M., et al., J. Cleaner Prod., 2018, vol. 175, p. 361.

    Article  CAS  Google Scholar 

  17. Spessato, L., Bedin, K.C., Cazetta, A.L., et al., J. Hazard. Mater., 2019, vol. 371, p. 499.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the National Center for Catalyst Research Center for Collective Use of the Institute of Catalysis and the Omsk Regional Center of Collective Usage SB RAS.

Funding

This work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of a state order to the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, project no. AAAA-A21-121011490008-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Kryazhev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryazhev, Y.G., Anikeeva, I.V., Gulyaeva, T.I. et al. Possibilities of Regulating the Texture Parameters of Porous Carbon Materials Obtained by Alkaline Dehydrochlorination of Polyvinyl Chloride with Subsequent Heat Treatment of Forming Polyvinylenes. Prot Met Phys Chem Surf 57, 806–810 (2021). https://doi.org/10.1134/S2070205121040134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121040134

Keywords:

Navigation