Skip to main content
Log in

The Influence of Co Concentration on the Properties of Conventionally Electrodeposited Ni–Co–Al2O3–SiC Nanocomposite Coatings

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this study, Ni–Co–Al2O3–SiC nanocomposite coatings with varying concentrations of Co were electrodeposited in a modified watts bath using conventional electrodeposition technique. The microhardness, surface morphology and phase structure of the coatings were characterized using Vickers microhardness tester, scanning electron microscopy and X-ray diffraction, respectively. The corrosion resistance of the composite coating was evaluated in 3.5% NaCl solution using an electrochemical work station. Increase in Co concentration in the electrolyte resulted in an increase in the microhardness of the nanocomposite coating. Corrosion resistance of coatings was also seen to increase considerably with increase in Co concentration in electrolyte. This was attributed mainly to the decrease in grain size, chemical composition, phase structure and preferred orientation of the coatings. The increase in Co in the electrolyte had a significant effect on the crystallite size of the Ni–Co–Al2O3–SiC coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Srivastava, M., et al., Surf. Coat. Technol., 2006, vol. 201, pp. 3051–3060.

    Article  CAS  Google Scholar 

  2. Ghaemi, M. and Binder, L.,J. Power Sources, 2002, vol. 111, pp. 248–254.

    Article  CAS  Google Scholar 

  3. Chiu, S.-Y., et al., Surf. Coat. Technol., 2014, vol. 247, pp. 68–73.

    Article  CAS  Google Scholar 

  4. Schlesinger, M. and M. Paunovic, Modern Electroplating, Hoboken, NJ: Wiley, 2011.

    Google Scholar 

  5. Fayomi, O.S.I. and Popoola, A.P.I., Egypt.J. Basic Appl. Sci., 2014, vol. 1, pp. 120–125.

    Google Scholar 

  6. Popov, K., Grgur, B., and Djokić, S.S., Fundamental Aspects of Electrometallurgy, New York: Kluwer Academic Publ., 2007.

    Google Scholar 

  7. Shi, L., et al., Appl. Surf. Sci., 2006, vol. 252, pp. 3591–3599.

    Article  CAS  Google Scholar 

  8. Chang, L.M., Guo, H.F., and An, M.Z., Mater. Lett., 2008, vol. 62, pp. 3313–3315.

    Article  CAS  Google Scholar 

  9. Ghazanlou, S.I., et al., Bull. Mater. Sci., 2016, vol. 39, pp. 1185–1195.

    Article  CAS  Google Scholar 

  10. Srivastava, M., Srinivasan, A., and Grips, V.K.W., Am. J. Mater. Sci., 2011, vol. 1, pp. 113–122.

    Article  Google Scholar 

  11. Srivastava, M., et al., Surf. Coat. Technol., 2010, vol. 205, pp. 66–75.

    Article  CAS  Google Scholar 

  12. Shi, L., et al., Mater. Sci. Eng., A, 2005, vol. 397, pp. 190–194.

    Article  CAS  Google Scholar 

  13. Ranjith, B. and Kalaignan, G.P., Appl. Surf. Sci., 2010, vol. 257, pp. 42–47.

    Article  CAS  Google Scholar 

  14. Novitskaya, E., Khalifa, H.E., and Graeve, O.A., Mater. Lett., 2018, vol. 213, pp. 286–289.

    Article  CAS  Google Scholar 

  15. Xu, S., et al., Ceram. Int., 2017, vol. 43, pp. 15060–15067.

    Article  CAS  Google Scholar 

  16. Parchovianský, M., et al., J. Eur. Ceram. Soc., 2017, vol. 37, pp. 4297–4306.

    Article  CAS  Google Scholar 

  17. Wu, Z., et al., Mater. Sci. Eng., A, 2012, vol. 556, pp. 767–774.

    Article  CAS  Google Scholar 

  18. Bakhit, B. and Akbari, A., J. Coat. Technol. Res., 2013, vol. 10, pp. 285–295.

    Article  CAS  Google Scholar 

  19. Wang, L., et al., Appl. Surf. Sci., 2005, vol. 242, pp. 326–332.

    Article  CAS  Google Scholar 

  20. Altamirano-Garcia, L., et al., J. Solid State Electrochem., 2015, vol. 19, pp. 423–433.

    Article  CAS  Google Scholar 

  21. Weil, R. and Cook, H.C., J. Electrochem. Soc., 1962, vol. 109, pp. 295–301.

    Article  CAS  Google Scholar 

  22. Monshi, A., et al., World J. Nano Sci. Eng., 2012, vol. 2, pp. 154–160.

    Article  CAS  Google Scholar 

  23. Zamani, M., Amadeh, A., and Baghal, S.M.L., Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 484–491.

    Article  CAS  Google Scholar 

  24. Li, Y., et al., Surf. Coat. Technol., 2008, vol. 202, pp. 4952–4956.

    Article  CAS  Google Scholar 

  25. Qiao, G., et al., Electrochim. Acta, 2005, vol. 51, pp. 85–92.

    Article  CAS  Google Scholar 

  26. Gómez, E. and Valles, E., J. Appl. Electrochem., 1999, vol. 29, pp. 803–810.

    Article  Google Scholar 

  27. Dehgahi, S., et al., J. Alloys Compd., 2017, vol. 692, pp. 622–628.

    Article  CAS  Google Scholar 

  28. Hassani, S., Raeissi, K., and Golozar, M.A., J. Appl. Electrochem., 2008, vol. 38, pp. 689–694.

  29. Shim, H.Y., et al., J. Agric. Chem. Environ., 2014, vol. 3, pp. 130–138.

    Google Scholar 

  30. Hanaor, D., et al., J. Eur. Ceram. Soc., 2012, vol. 32, pp. 235–244.

    Article  CAS  Google Scholar 

  31. Cai, F., et al., Appl. Surf. Sci., 2015, vol. 324, pp. 482–489.

    Article  CAS  Google Scholar 

  32. Bakhit, B., Surf. Coat. Technol., 2015, vol. 275, pp. 324–331.

    Article  CAS  Google Scholar 

  33. Low, C., et al., Surf. Coat. Technol., 2006, vol. 201, pp. 371–383.

    Article  CAS  Google Scholar 

  34. Van Tassel, J.J. and C.A. Randall, Key Eng. Mater., 2006, vol. 314, pp. 167–174.

    Article  CAS  Google Scholar 

  35. Besra, L. and Liu, M., Prog. Mater. Sci., 2007, vol. 52, pp. 1–61.

    Article  CAS  Google Scholar 

  36. Bakhit, B. and Akbari, A., Surf. Coat. Technol., 2012, vol. 206, pp. 4964–4975.

    Article  CAS  Google Scholar 

  37. Prabu, S. and Wang, H.W., J. Chin. Chem. Soc., 2017, vol. 64, pp. 1467–1477.

    Article  CAS  Google Scholar 

  38. Goto, Y., et al., Coatings, 2018, vol. 8, p. 5.

    Article  CAS  Google Scholar 

  39. Atapattu, H., et al., J. Mater. Sci.: Mater. Electron., 2016, vol. 27, pp. 5415–5421.

    CAS  Google Scholar 

  40. Wang, P., et al., J. Coat. Technol. Res., 2011, vol. 8, pp. 409–417.

    Article  CAS  Google Scholar 

  41. Schuh, C., Nieh, T., and Iwasaki, H.J.A.M., Acta Mater., 2003, vol. 51, pp. 431–443.

    Article  CAS  Google Scholar 

  42. Pande, C. and Cooper, K., Prog. Mater. Sci., 2009, vol. 54, pp. 689–706.

    Article  CAS  Google Scholar 

  43. Tury, B., et al., Surf. Coat. Technol., 2006, vol. 200, pp. 6713–6717.

    Article  CAS  Google Scholar 

  44. Bakhit, B., et al., Appl. Surf. Sci., 2014, vol. 307, pp. 351–359.

    Article  CAS  Google Scholar 

  45. Dheeraj, P., et al., J. Alloys Compd., 2017, vol. 729, pp. 1093–1107.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

EDS spectra of the Ni–Al2O3–SiC nanocomposite coatings with varying contents of Co was analysed by Research Institute of Nanjing Chemical Industry Group, Sinopec, thanks to senior engineer Jianguo Lu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Kang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyambura Samuel Mbugua, Kang, M., Li, H. et al. The Influence of Co Concentration on the Properties of Conventionally Electrodeposited Ni–Co–Al2O3–SiC Nanocomposite Coatings. Prot Met Phys Chem Surf 56, 94–102 (2020). https://doi.org/10.1134/S2070205120010165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120010165

Keywords:

Navigation