Skip to main content
Log in

Acid Activation of Montmorillonite as a Way of Controlling Its Catalytic Behavior in the Synthesis of Solketal from Glycerol and Acetone

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The effect of acid activation with 0.125–0.5 M Н2SO4, HCl, and HNO3 on the physicochemical properties and catalytic performance of natural clay (the Mukhartalinskii deposit) containing 95% montmorillonite (MM) was investigated in the synthesis of solketal [(2,2-dimethyl 1,3-dioxolan-4-yl)methanol] from glycerol and acetone. The reaction rate and selectivity toward solketal are shown to depend on the type and concentration of acid. Both the yield of solketal and the reaction rate rose with increasing acid concentration, which correlates with the increase in the number of Brønsted acid sites. The efficiency of the system was found to diminish in the order MM/HCl > MM/HNO3 > MM/H2SO4 as the surface acidity decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Checa, M., Nogales-Delgado, S., Montes, V., and Encinar, J.M., Catalysts, 2020, vol. 10, no. 11. https://doi.org/10.3390/catal10111279

  2. Bagnato, G., Iulianelli, A., Sanna, A., and Basile, A., Membranes, 2017, vol. 7, no. 2. https://doi.org/10.3390/membranes7020017

  3. Nanda, M.R., Yuan, Z., Qin, W., and Xu, C., Catal. Rev., 2016, vol. 8, no. 3, pp. 309–336.

    Article  Google Scholar 

  4. Maksimov, A.L., Nekhaev, A.I., and Ramazanov, D.N., Pet. Chem., 2015, vol. 55, no. 1, pp. 1–21. https://doi.org/10.1134/S0965544115010107

    Article  CAS  Google Scholar 

  5. Correa, I., Faria, R.P.V., and Rodrigues, A.E., Sustainable Chem., 2021, vol. 2, pp. 286–324.

    Article  CAS  Google Scholar 

  6. Mota, C.J.A., Silva, C.X.A., Rosenbach, N.J., Costa, J., and Silva, F., Energy Fuels, 2010, vol. 24, pp. 2733–2736.

    Article  CAS  Google Scholar 

  7. US Patent 20090270643, 2009.

  8. RF Patent 2365617, 2009.

  9. Data Bridge Market Research. www.databridgemarketresearch.com/reports/global-solketal-market. Cited April 18, 2022.

  10. Ferreira, P., Fonseca, I.M., Ramosa, M., Vital, J., and Castanheiro, J.E., Appl. Catal., B, 2010, vol. 98, nos. 1–2, pp. 94–99.

  11. Nanda, M.R., Yuan, Z., Qin, W., Ghaziaskar, H.S., Poirier, M-A., and Xu, C., Appl. Energy, 2014, vol. 123, pp. 75–81.

    Article  CAS  Google Scholar 

  12. Li, L., Korányi, T.I., Sels, B.F., and Pescarmona, P.P., Green Chem, 2012, vol. 14, no. 6, pp. 1611–1619.

    Article  CAS  Google Scholar 

  13. Amri, S., Gómez, J., Balea, A., Merayo, N., Srasra, E., Besbes, N., and Ladero, M., Appl. Sci., 2019, vol. 9, no. 21, p. 4488. https://doi.org/10.3390/app9214488

    Article  CAS  Google Scholar 

  14. Timofeeva, M.N., Panchenko, V.N., Krupskaya, V.V., Gil, A., and Vicente, M.A., Catal. Commun., 2017, vol. 90, pp. 65–69.

    Article  CAS  Google Scholar 

  15. Ikonnikova, K.V., Ikonnikova, L.F., Minakova, T.S., and Sarkisov, Yu.S., Teoriya i praktika pH-metricheskogo opredeleniya kislotno-osnovnykh svoistv poverkhnosti tverdykh tel: uchebnoe posobie, (Theory and Practice of the pH-Metric Determination of Solids Surface Acid-Base Properties: a Textbook), Tomsk: Tomsk. Polytekhn. Univ., 2011.

  16. Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotnom-osnovnom katalize (Infrared Spectroscopy in Heterogeneous Acid-Base Catalysis), Novosibirsk: Nauka, 1992.

  17. Krupskaya, V.V., Zakusin, S.V., Tyupina, E.A., Dorzhieva, O.V., Zhukhlistov, A.P., Belousov, P.E., and Timofeeva, M.N., Minerals, 2017, vol. 7, no. 4, pp. 49–64. https://doi.org/10.3390/min7040049

    Article  CAS  Google Scholar 

  18. Farmer, V.C., in Data Handbook for Clay Materials and Other Non-Metallic Minerals, van Olphen, H. and Fripiat, J.J., Eds., Oxford, UK: Pergamon Press, 1979, pp. 285–337.

    Google Scholar 

  19. Angelini, M.M., Garrard, R.J., Rosen, S.J., and Hinrichs, R.Z., J. Phys. Chem. A, 2007, vol. 111, no. 17, pp. 3326–3335.

    Article  CAS  Google Scholar 

  20. Flessnera, U., Jones, D.J., Rozière, J., Zajac, J., Storaro, L., Lenarda, M., Pavan, M., Jiménez-López, A., Rodríguez-Castellón, E., Trombetta, M., and Busca, G., J. Mol. Catal. A: Chem., 2001, vol. 168, pp. 247–256.

    Article  Google Scholar 

  21. Tyagi, B., Chudasama, C.D., and Jasra, R.V., Spectrochim. Acta, Part A, 2006, vol. 64, pp. 273–278.

    Article  Google Scholar 

  22. Krupskaya, V., Novikova, L., Tyupina, E., Belousova, P., Dorzhieva, O., Zakusin, S., Kimh, K., Roessneri, F., Badettij, E., Brunellij, A., and Belchinskay, L., Appl. Clay Sci., 2019, vol. 172, pp. 1–10.

    Article  CAS  Google Scholar 

  23. Finevich, V.P., Allert, N.A., Karpova, T.R., and Duplyakin, V.K., Ross. Khim. Zh., 2007, vol. 51, no. 4, pp. 69–74.

    CAS  Google Scholar 

  24. Zatta, L., Ramos, L.P., and Wypych, F., Appl. Clay Sci., 2013, vols. 80–81, pp. 236–244.

  25. Acid strength tables. http://primchem.narod.ru/chemistry/acids.html. Cited April 18, 2022.

  26. Briones-Jurado, C. and Agacino-Valdés, E., J. Phys. Chem. A, 2009, vol. 113, no. 31, pp. 8994–9001. https://doi.org/10.1021/jp900236r

    Article  CAS  PubMed  Google Scholar 

  27. He, H., Guo, J., Xie, X., Lin, H., and Li, L., Clay Miner., 2002, vol. 37, no. 2, pp. 337–344. https://doi.org/10.1180/0009855023720037

    Article  CAS  Google Scholar 

  28. Haffad, D., Chambellan, A., and Lavalley, J.C., Catal. Lett., 1998, vol. 54, pp. 227–233.

    Article  CAS  Google Scholar 

  29. Jeon, I. and Nam, K., Sci. Rep., 2019, vol. 9. https://doi.org/10.1038/s41598-019-46175-y

  30. Silva, C.X.A. and Mota, C.J.A., Biomass Bioenergy, 2011, vol. 35, no. 8, pp. 3547–3551.

    Article  Google Scholar 

  31. Calvino-Casilda, V., Stawicka, K., Trejda, M., Ziolek, M., and Banares, M.A., J. Phys. Chem. C, 2014, vol. 118, pp. 10780–10791.

    Article  CAS  Google Scholar 

  32. Marton, G.I., Iancu, P., Plesu, V., Marton, A., and Soriga, S.G., Rev. Chim. (Bucharest, Rom.), 2015, vol. 66, no. 5, pp. 750–753.

  33. Ozorio, L.P., Pianzolli, R., Mota, M.B., and Mota, C.J.A., J. Braz. Chem. Soc., 2012, vol. 23, no. 5, pp. 931–937.

    Article  CAS  Google Scholar 

  34. Pierpont, A.W., Batista, E.R., Martin, R.L., Chen, W., Kim, J.K., Hoyt, C.B., Gordon, J.C., Michalczyk, R., Silks, L.A.P., and Wu, R., ACS Catal., 2015, vol. 5, pp. 1013–1019.

    Article  CAS  Google Scholar 

  35. US Patent 6890364, 2005.

  36. EA Patent 018090, 2013.

  37. ER Patent 2298851, 2014.

Download references

Funding

This work was supported by the RF Ministry of Higher Education and Science as part of a State Task for the Boreskov Institute of Catalysis, project no. AAAA-A21-121011390055-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Kovalenko.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, O.N., Simentsova, I.I., Panchenko, V.N. et al. Acid Activation of Montmorillonite as a Way of Controlling Its Catalytic Behavior in the Synthesis of Solketal from Glycerol and Acetone. Catal. Ind. 14, 208–217 (2022). https://doi.org/10.1134/S2070050422020040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422020040

Keywords:

Navigation