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Abstract—We consider q-difference equations for colored Jones polynomials. These sequences of
polynomials are invariants for the knots and their asymptotics plays an important role in the famous
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1. INTRODUCTION

At first we give some definitions concerning knots from the paper [52] and the books [1, 9, 49].

A knot in 3-sphere S
3 is a continuous embedding of a topological circle in 3-dimensional space

considered up to continuous deformation (isotopy). The simplest knot of all is unknotted circle, which
we call the unknot or the trivial knot. The next simplest non-trivial knot is called a trefoil knot. A link
is a collection of knots which do not intersect, but which may be linked together. An oriented link L is
a compact 1-dimensional oriented smooth submanifold of R3 ⊂ S

3. A framed oriented link L is a link
equipped with a smooth normal vector field V , which is a function V : L → R

3, such that V (x) is not in
the tangent space TxL for every x ∈ L.

A hyperbolic knot K in S
3 is defined to be a knot such that the complement S3 \K is hyperbolic

3-manifold. Note that S3 \K is a finite volume but noncompact hyperbolic 3-manifold (see [1]). A
torus knot is a knot which can be placed on an ordinary torus in S

3. With any nontrivial knot K there is
associated a whole collection of other knots, known as satellites of K; these are knots which are obtained
by a nontrivial embedding of a circle in a small solid torus neighborhood of K. Here, “nontrivial” means
that the embedding is not isotopic to K itself and is not contained within a ball inside the solid torus. A
knot is a satellite knot if it is a satellite of a nontrivial knot, see also [40, Definition 1.2].

The famous Thurston’s theorem [52, Section 2.5] states that every knot in S
3 is either a torus knot or

a satellite knot or a hyperbolic knot, see also [51].
In algebraic topology, a way of studying knots is to associate some invariants, which are useful to

separate knots. In the given paper, we consider one of such invariants. In 1985, Jones introduced his
celebrated polynomial invariant, the Jones polynomial JK(q) associated to a knot K [26, 27]. At first,
this polynomial was defined by using the operator algebra, namely, the Yang–Baxter operator and the
R-matrix. Shortly after, another version of this invariant was given by using the Kauffman bracket [31].
Colored versions of these invariants were defined, via quantum groups [47]. For details on the definitions
of the colored Jones polynomial, see, e.g., [40, Chapter 2].
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Definition 1 [13]. (i) The colored Jones function J ′
K : N → Z[q±1] of a knot K in 3-space is a

sequence of Laurent polynomials whose nth term J ′
K(n) is the Jones polynomial of a knot K with the

n dimensional irreducible representation sl2. We normalize the Jones function so that the value for the
trivial knot (unknot) is one, J ′

unknot(n) = 1 for all n.

(ii) We denote by JK : N → Z[q±1/2] the colored Jones function with normalization by

Junknot(n) = [n] :=
qn/2 − q−n/2

q1/2 − q−1/2
. (1)

Hence, JK(n) = [n]J ′
K(n). Below we use also notation: JK ≡ JK(n) ≡ JK(n, q). For any knot,

JK(1) = 1 and JK(2) coincides with the Jones polynomial of a knot K.
For a detailed discussion on the polynomial invariants of knots that come from quantum groups, see,

e.g., [58, 59].
A new approach to the study of the colored Jones function was proposed by Garoufalidis and Lê [12]

by using a q-difference equation.
Definition 2. A q-difference equation for a sequence {f(1), f(2), ...} of smooth functions of q has

the form
d∑

j=0

bj(q
n, q)f(n+ j, q) = 0, (2)

where bj(u, v) are smooth functions and f(n, q) = f(n)(q). The characteristic polynomial (see [14,
Definition 1.1]) of (2) is

P (v, λ) =

d∑

j=1

bj(v, 1)λ
j . (3)

Theorem 1 [12, Theorem 1]. The colored Jones function of any knot satisfies a q-difference
equation.

Recall that a sequence f : N → Q[q] is q-holonomic if it satisfies a q-linear difference equation, i.e.,
there exist a number d ∈ N and polynomials bj(u, v) ∈ Q[u, v] for j = 0, 1, . . . , d with bd �= 0 such that
for all n ∈ N the sequence f satisfies (2). Thus, Theorem 1 states that the colored Jones function is
q-holonomic.

Holonomic functions and systems were first introduced and studied by Bernstein [7, 8]. The
algorithmic significance of q-holonomic sequence was first recognized by Zeilberger [62]. To prove
Theorem 1, Garoufalidis and Lê showed (see [12, Proposition 3.7]) that the colored Jones function can
be written as a multisum

JK(n) =

∞∑

k1,...,kr=0

F (n, k1, . . . , kr) (4)

of a proper q-hypergeometric function F (n, k1, . . . , kr) (see [12, Definition 2.3] or [61, p. 589]). In (4),
for a fixed positive n, only finitely many terms are nonzero. In turn, Zeilberger [62] showed how to check
to holonomicity and proved that a class of proper-hypergeometric functions is holonomic. Moreover,
finite (multi-dimensional) sums of proper q-hypergeometric terms are q-holonomic in the remaining
free variables. This is the Fundamental Theorem of Wilf and Zeilberger [61]. Hence, the terms F
in (4) are q-holonomic in all r + 1 variables [12]. Recall that a discrete function f ∈ Z

r → Q(q) is q-
hypergeometric iff Eif/f ∈ Q(q, qn1 , . . . , qnr) for all i = 1, . . . , r. Here the operators Ei, i = 1, . . . , r,
act on the discrete functions by Eif(n1, . . . , nr) = f(n1, . . . , ni−1, ni + 1, ni+1, . . . , nr).

Remark. The asymptotics of solutions of q-difference equations at q = exp{2πiα/n} with some
α ∈ [0, 1] as n → ∞ was studied by Garoufalidis and Geronimo [14] under a regular condition for
Eq. (2). By definition, Eq. (2) is regular (see [14, Def. 1.1]) if

DscλP (v, λ) · b0(v, 1) · bd(v, 1) �= 0 for all v ∈ S
1, (5)
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where DscλP (v, λ) is the discriminant of P (v, λ). Another words, Eq. (2) is regular iff the eigenvalues
of (2) (i.e., the roots of P (v, λ)) never collide and never vanish for every v ∈ S

1.
The key role in the proof in [14] plays the translation of asymptotics of solutions of q-difference

equations in the terms of asymptotics of solutions of ε-difference equations [14, Section 2]. In turn,
the ε-difference equations of the form

l∑

j=0

aj(kε, ε)yk+j = 0, k ∈ Z (l fixed),

were considered by O. Costin and R. Costin [10]. Using the WKB method, they studied the asymptotics
of solutions as ε → 0.

In this paper we adopt for q-polynomials another approach for studying asymptotics of usual poly-
nomials defined by the recurrence relations of high order (the approach was introduced and developed in
[2–6, 55–57]).

2. VOLUME CONJECTURE

In this section, we describe some conjectures concerning the colored Jones function.

2.1. Hyperbolic Volume Conjecture

Kashaev [28, 29] defined a complex-valued knot invariant 〈K〉n of a knot K for n = 2, 3, ... by using
the quantum dilogarithm. He proposed a conjecture that his invariant 〈K〉n would grow exponentially
w.r.t. n and that its growth rate would give the volume of the complement of a hyperbolic knot:

2π lim
n→∞

1

n
log |〈K〉n| = vol(S3 \K),

where vol(S3 \K) is the volume of a complete hyperbolic metric in the knot complement S3 \K. Later,
H. Murakami and J. Murakami [39, Theorem 4.9] proved that Kashaev’s invariant with parameter n
coincides with n dimensional colored Jones polynomial evaluated at the n-th root of unity,

〈K〉n = J ′
K(n, q)|q=exp{2πi/n}. (6)

The value 〈K〉n is called the Kashaev invariant of a knot K at q = exp{2πi/n}. For example, see [29],
〈unknot〉n = 1,

〈31〉n =

n−1∑

k=0

(q)k, 〈41〉n =

n−1∑

k=0

|(q)k|2, 〈52〉n =
∑

0≤k≤l≤n−1

(q)2l
(q)k

q−(l+1)k, (7)

where the q-factorial (q)m, m ∈ N, is defined by

(q)m = (1− q)(1 − q2) · . . . · (1− qm), (q)0 := 1,

and q denotes the complex conjugation of q.
The Hyperbolic Volume Conjecture (HVC, in short) states as follows.
(HVC): Let K be a hyperbolic knot in S

3. Then

2π lim
n→∞

log |J ′
K(n, q = e2πi/n)|

n
= vol(S3 \K). (8)

The (HVC) was generalized by H. Murakami and J. Murakami [39] to the any knot as follows.
Volume Conjecture: Let K be any knot in S

3. Then

2π lim
n→∞

log |J ′
K(n, q = e2πi/n)|

n
= v3||S3 \K||, (9)

where v3 is the volume of the ideal regular hyperbolic tetrahedron in 3-dimensional hyperbolic
space H3 and ||M || is the Gromov norm [20] (or simplicial volume). In particular if the knot K
is hyperbolic, then the r.h.s. of (9) coincides with the volume of the knot complement vol(S3 \K).
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For details, see [39, Sec. 5] and the review book [40, Chapter 3].

Remarks. (i) The simplicial volume of K, ||S3 \K||, is equal to the sum of the hyperbolic volumes of
the hyperbolic pieces of the torus decomposition of S3 \K divided by v3.

(ii) Note that simplicial volumes of torus knots are known to be zero. For example, the trefoil knot (the
31 knot in Rolfsen’ notation [49]) is a torus knot [51]. Hence, ||S3 \ 31|| = 0. Kashaev and Tirkkonen [30]
proved the Volume Conjecture for torus knots. They showed that in this case the l.h.s. of (8) vanishes,
see also [16, Appendix B].

(iii) For the first time, the regular hyperbolic 3-simplex was considered by Gieseking in 1912
(see [19]). Consider a regular tetrahedron in Euclidean space, inscribed in the unit sphere, so that its
vertices are on the sphere. Now interpret this tetrahedron to lie in the projective model for hyperbolic
space, so that it determines an ideal hyperbolic simplex. The dihedral angles of the hyperbolic simplex
are π/3. The volume of regular ideal 3-simplex is equal to v3 = 3Λ(π/3) = 1.01494 . . . (see [38]), where
Λ(z) is the Lobachevskii function,

Λ(z) = −
z∫

0

log |2 sinu|du. (10)

Note that the Lobachevskii function can be expressed by the imaginary part of the Euler dilogarithm
Li2(z) [29]. For z ∈ C such that |z| ≤ 1, the Euler dilogarithm is defined by

Li2(z) :=
∞∑

r=1

zr

r2
.

For z ∈ C such that | arg(z)| < π, the analytic continuation of the dilogarithm function is given by

Li2(z) = −
z∫

0

log(1− u)

u
du

with 0 < arg(1− z) < 2π. Then, for θ ∈ R, the Lobachevskii function is defined by the rule

Λ(θ) =
1

2
� (Li2(exp(2θi))) =

1

2

∞∑

r=1

sin(2rθ)

r2
.

(iv) In 1975, R. Riley [48] showed that the figure-eight knot complement has a hyperbolic structure.
Thus, the figure-eight knot (the 41 knot in Rolfsen’ notation [49]) is a hyperbolic knot. In 1978,
Thurston proved that the figure-eight complement can be triangulated by two copies of a maximal 3-
simplex. Hence, vol(S3 \ 41) = 2v3 = 6Λ(π/3) = 2.02988 . . . This formula was obtained by Milnor [38].
Similarly, the complement of the Whitehead link was constructed from a regular ideal octahedron
which in turn, is formed by gluing two copies of the infinite cone on a regular planar quadrilateral.
Thus, its volume equals 8Λ(π/4) = 3.66386 . . .. The complement of the Borromean rings has volume
16Λ(π/4) = 7.32772 . . ., since it is obtained by gluing two ideal octahedra together, see Example in [51,
Sect. 7.2].

(v) There are examples of knots all with the same volume. For example, the 52 knot and a 12-crossing
knot 12n_242 have the same volume, vol(S3 \ 52) = vol(S3 \ 12n_242) = 2, 82812 . . . (cf. [36]). There
are other invariants which can be used to distinguish between manifolds of the same volume, for example,
the maximal cusp volume [1, Sections 3, 4].

(vi) The volume conjecture was confirmed for 41 by Ekholm (see, e.g., [40]); 52 by Kashaev [29] and
Ohtsuki [41]; 61 by Kashaev [29]; Whitehead chains by van der Veen [60]; twisted Whitehead links by
Zheng [63]; Borromean rings by Garoufalidis and Lê [15]; for knots with up to 7 crossings by Ohtsuki,
Yokota [42, 43].

To numerically confirm the volume conjecture, the authors use the explicit multisum formulas for the
Kashaev invariant (cf. (7)). These formulas allow to reduce the finding the limit in the l.h.s. of (9) to
the study of the asymptotics of special functions such that the Lobachevskii function Λ(z), the Euler
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dilogarithm Li2(z), with applying the saddle point method. Namely, the first step in this approach is to
write the Kashaev invariant 〈K〉N in the form

〈K〉N ∼
∫

exp

(
iN

2π
VK(z)

)
dz1 . . . dzp for large N,

where p is the number of summations appearing in 〈K〉N . The function VK(z), z ∈ C
p, is called a

potential. To find this function, one uses the following asymptotic behavior

qkl ∼ exp

(
− iN

2π
log qk log ql

)
, (q)n ∼ exp

(
iN

2π

(
Li2(q

n)− π2

6

))
.

The second step is to find a saddle point z0 which is a solution to ∂
∂zj

VK(z)|z=z0 = 0 for any j =

1, . . . , p. Then, 〈K〉N ∼ exp
(
iN
2π VK(z0)

)
. For example, for the 41 knot, the potential is V41(z) =

Li2(z)− Li2(z−1), the saddle point is z0 = exp (−πi/3) (see [24, p. 333]).

2.2. AJ Conjecture

The next AJ conjecture (made by Garoufalidis [13, p. 297]) relates the colored Jones polynomial and
the A-polynomial. (AJ are the initials of the A-polynomial and the colored Jones polynomial J). The A-
polynomial of a knot was introduced in [11]. It is a two-variable polynomial, usually written in the terms
of the meridian and longitude variables M and L. The A-polynomial, AK(M,L), parameterizes the
affine variety of SL(2,C) representations of the knot complement, viewed from the boundary torus [11].
The A-polynomial is defined up to multiplication by a rational function of M and a power of L [13].

Since the colored Jones polynomial is defined by a multidimensional sum of a proper q–hyper-
geometric term, numerous algorithms can produce a linear recurrence with polynomial coefficients; see,
e.g., the book of Petkovšek, Wilf and Zeilberger [46]. Different algorithms in general produce different
recurrences, which may not be of minimal order. The non-commutative A-polynomial of the twist knots
Kp was computed with a certificate by Garoufalidis and Sun [18] for p = −15; ...; 15. This polynomial
was calculated for most knots up to 12 crossings, see [11, 36]. To state the AJ conjecture we write
q-difference equations in the operator form

Pf = 0, where P :=

d∑

j=0

bj(Q, q)Ej . (11)

The operators E, Q, and q act on a discrete function f : N → Z[q±1] by the rule

(qf)(n) = qf(n), (Qf)(n) = qnf(n), (Ef)(n) = f(n+ 1). (12)

Then, we put q = t4, (Lf)(n) := f(n+ 1), (Mf)(n) := t2nf(n). Then J ′
K(n) satisfies the following

equation

αk(f) = 0, αk ≡ αK(t;M,L) :=

d∑

j=0

αK,j(t;M)Lj . (13)

The AJ conjecture (cf. [13]): For every knot K, αK |t=±1 is M-essentially equal to the A-polynomial
(i.e., αK |t=±1 is equal to the A-polynomial of the knot K up to a factor depending on M

only). Note that αK is defined up to a factor ±taM b, a, b ∈ Z. Another form of this conjecture is
the characteristic polynomial

chPK(λ, v) = AK(L,M)|(L,M2)=(λ,v)

up to a multiplication by a polynomial in v. For example, for K = 31,

αK |t=−1 = (M4 − 1)(L− 1)(LM6 + 1) = (M4 − 1)AK(L,M),

where AK(L,M) is A-polynomial for K = 31. Cooper et al [11] computed the A-polynomial of the 31
and 41 knots (see also [13, p. 300])

A31(L,M) = (L− 1)(LM6 + 1), A−31(L,M) = (L− 1)(L+M6),
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Fig. 1. The unknot and the 31, 41, 51 and 52 knots.

A41(L,M) = (L− 1)(−L+ LM2 +M4 + 2LM4 + L2M4 + LM6 − LM8),

where the −31 knot is the mirror image of the 31 knot. The A-polynomial of the 52 knot is given by
(cf. [36, 11])

A52(M,L) = L3M14 + L2
(
−M14 + 2M12 + 2M10 −M6 +M4

)

+ L
(
M10 −M8 + 2M4 + 2M2 − 1

)
+ 1. (14)

Correspondingly (we change L into L−1 and omit the factor L−3),

A−52(M,L) = L3 + L2
(
M10 −M8 + 2M4 + 2M2 − 1

)

+ L
(
−M14 + 2M12 + 2M10 −M6 +M4

)
+M14. (15)

The AJ conjecture was confirmed for the knots 31, 41, 74 (by Garoufalidis [13] and Koutschan–
Garoufalidis [17]); for torus knots (by Hikami [25], Tran [54]), for some classes of two-bridge knots,
including all twist knots, and pretzel knots (by Le [33], Le–Tran [34], Le–Zhang [35]).

Remark. There are new conjectures about the colored Jones polynomial, for details, see, e.g., [53].

3. THE COLORED JONES FUNCTION

Habiro [23] obtained the following expansion of the colored Jones function, known as the cyclotomic
expansion. He showed that for every zero-framed knot K, there exists a cyclotomic function CK :
Z>0 → Z[q±1] such that

J ′
K(n) =

n−1∑

k=0

CK(k)s(n, k), n ∈ N, (16)

where CK(0) := 1, the cyclotomic kernel s(n, k) is a proper q-hypergeometric term given by (see e.g.,
[13, p. 300; 18, p. 1576])

s(n, k) =
{n− k}{n − k + 1} · · · {n+ k − 1}{n + k}

{n}

= qnk
k∏

j=1

(1− qj−n)(1 − q−j−n) =

k∏

j=1

(qn + q−n − qj − q−j), with s(n, 0) := 1. (17)

Here {n} := qn/2 − q−n/2. Masbaum [37] obtained a formula for the colored Jones polynomial of twist
knots generalizing formula of Habiro and Lê [32] for the 31 and 41 knots. Note that Garoufalidis and
Lê [12] proved that the function CK of every knot K is q-holonomic. For the unknot, the function
Cunknot(k) = δk0, where δk0 denotes the Kronecker delta. Below we give examples of the function CK

and the colored Jones function J ′
K for the 31, 41 and 52 knots. The unknot and the first four knots are

shown in Fig. 1. The pictures for the next knots see in [49].
Examples. 1) The trefoil knot is the simplest non-trivial knot. The (right-handed) 31 knot has the

Jones polynomial of the form J ′
31
(q) = q−1 + q−3 − q−4 (cf. [36]). The 31 knot is chiral (i.e., the knot

that is not equivalent to its mirror image). For the (left-handed) trefoil (−31), the mirror image of 31,

J ′
−31(q) = q + q3 − q4. (18)
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The cyclotomic function CK for the right-handed trefoil knot is equal to C31(k) = (−1)kq−k(k+3)/2

(cf. [37, p. 555; 13, p. 299]). For the left-handed trefoil, J ′
−31(n, q) = J ′

31(n, q
−1), hence, by (16),

J ′
−31(n, q) =

n−1∑

k=0

(−1)kqk(k+3)/2s(n, k).

2) The figure-eight knot is the simplest hyperbolic knot. This knot has Jones polynomial of the form
J ′
41(q) = q2 − q + 1− q−1 + q−2 (cf. [36]). The 41 knot is achiral. For this knot, the function CK equals

C41(k) = 1. Hence, by (16), the colored Jones function is J ′
41(n, q) =

n−1∑
k=0

s(n, k). In particular, the N-

colored Jones polynomial J ′
K(N ; q) evaluated at q = exp{2πi/N} is

J ′
41(N, q = exp{2πi/N}) =

N−1∑

k=0

s(N, k)|q=exp{2πi/N} =

N−1∑

k=0

(q)k(q
−1)k =

N−1∑

k=0

|(q)k|2,

what coincides with [29, formula (2.2)].
3) The Jones polynomial of the 52 knot is (cf. [36])

J ′
52(q) = −q−6 + q−5 − q−4 + 2q−3 − q−2 + q−1.

The 52 knot is chiral, the Jones polynomial of the mirror of 52 is J ′
−52

(q) = J ′
52
(q−1) and C−52(k, q) =

C52(k, q
−1). For this knot, the cyclotomic function equals (cf. [37, Theorem 5.1])

C52(k) ≡ C52(k, q) = (−1)kq−
3k2+5k

2

k∑

m=0

q−
m2−2m−3km

2
[k]!

[m]![k −m]!
, (19)

where [k]! = [1][2] · · · [k], [0]! := 1, [k] is defined in (1). In particular, (19) implies

C52(0) = 1, C52(1) = −q−4 − q−2, C52(2) = q−11 + q−8 + q−7 + q−5,

C52(3) = q−21 + q−17 + q−16 + q−15 + q−13 + q−12 + q−11 + q−9. (20)

For the −52 knot, C−52(k, q) = C52(k, q
−1). The colored Jones function for the 52 knot is given by (16),

(17), and (19). In particular, using (16), (17), and (20), we calculate the colored Jones function J ′
52(n, q)

for n = 1, 2, 3

J ′
52(n, q)|n=1 = 1,

J ′
52(n, q)|n=2 = −q−6 + q−5 − q−4 + 2q−3 − q−2 + q−1,

J ′
52(n, q)|n=3 = q−17 − q−16 − q−15 + 2q−14 − q−13 − 2q−12 + 3q−11 − q−10

− 3q−9 + 4q−8 − q−7 − 2q−6 + 3q−5 − q−3 + q−2. (21)

4. q-DIFFERENCE EQUATIONS

The recurrence relations for the colored Jones function can be found from multisum-formulas for the
colored Jones function of a form (16) by computer calculations. For details, see [13, Chapter 3.2]. There
are various programs that can compute the recursion relations for multisums, see, e.g., [18, 45, 46] and
the references therein. Below we give q-difference equations in the case of the 31 and 41 knots. For the
52 knot, the q-difference equation is given in Section 5.

4.1. q-Difference Equation for the Trefoil Knot

For K = −31, on the first step the program gives a recurrence relation for the (left-handed) trefoil
J ′
−31(n, q) of a form

J ′
−31(n) = q−2+n−q + q2n

−1 + qn
− q−1+3n 1− q−1+n

1− qn
J ′
−31(n− 1). (22)
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Put J ′
−31(0) = 0. Then J ′

−31(1) = 1 and J ′
−31(2) = q + q3 − q4 (cf. formula (18)). Relation (22) is a first

order inhomogeneous recurrence relation. On the second step, the program converts (22) into a second
order homogeneous recurrence relation

2∑

j=0

bj(q
n, q)J ′

−31(n+ j) = 0, (23)

where the coefficients bj , j = 0, 1, 2, are

b0 =
q2n+2(qn − 1)

(q2n+1 − 1)
, b1 =

(qn+1 − 1)(−1 + q2n+3 + q3n+4 − q5n+5)

qn(q2n+3 − 1)(q2n+1 − 1)
,

b2 =
qn+2 − 1

qn+1(1− q2n+3)
. (24)

The initial conditions for (23) are J ′
−31(0) = 0, J ′

−31(1) = 1. The characteristic polynomial for this knot
is of the form

P−31(v, λ) =
2∑

j=0

bj(v, 1)λ
j = −(λ− 1)(λ + v3)

v(1 + v)
, DscλP−31(v, λ) =

(1− v + v2)2

v2
.

The eigenvalues are λ1 = 1 and λ2 = −v3. In particular, DscλP−31(v, λ) = 0 for v1,2 = e±πi/3 ∈ S
1.

Therefore, the regularity condition (5) does not hold.

4.2. q-Difference Equation for the Figure-Eight Knot

For the 41 knot, on the first step we obtain a second-order inhomogeneous recurrence relation of the
form (cf. [13, p. 303])

J ′
41(n) =

q1−n(1 + qn−1)(1 − q2n−1)

1− qn
− (1− qn−2)(1 − q2n−1)

(1− qn)(1− q2n−3)
J ′
41(n − 2)

+
q2−2n(1− qn−1)2(1 + qn−1)(1 + q4n−4 − qn−1 − q2n−3 − q2n−1 − q3n−3)

(1− qn)(1− q2n−3)
J ′
41(n− 1),

which is converted into a third-order homogeneous recurrence relation of the form (after change n →
n+ 3)

3∑

j=0

bj(q
n, q)J ′

41(n+ j) = 0, (25)

where the coefficients bj ≡ bj(q
n, q), j = 0, 1, 2, 3, are

b0 =
qn+1(qn − 1)

(1 + qn+1)(q2n+1 − 1)
, b3 =

qn+2(qn+3 − 1)

(1 + qn+2)(1 − q2n+5)
(26)

and

b1 =
(qn+1 − 1)(1− 2qn+1 + qn+2 − q2n+1 + q2n+2 − q2n+3 + q3n+2 − 2q3n+3 + q4n+4)

qn+1(1 + qn+2)(1− q2n+1)
,

b2 =
(qn+2 − 1)(1 + qn+1 − 2qn+2 − q2n+3 + q2n+4 − q2n+5 − 2q3n+6 + q3n+7 + q4n+8)

qn+2(1 + qn+1)(q2n+5 − 1)
. (27)

Remark. Note that the coefficients bj in (24) and (27) have the factor (qn+j − 1) for all j.
This fact is valid for any knot and follows from (16) and the explicit formula (17) for the kernel
s(n, k) since

s(n, k) =
γ(n, k)

1− qn
, γ(n, k) :=

n+k∏

j=n−k

(1− qj).
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The initial conditions for (25) are J ′
41(0) = 0, J ′

41(1) = 1, J ′
41(2) = q2 − q + 1− q−1 + q−2.

In this case, the characteristic polynomial is

P41(v, λ) =

3∑

j=0

bj(v, 1)λ
j = −

(λ− 1)
(
v2λ2 − λ(1− v − 2v2 − v3 + v4) + v2

)

v(1 + v)2
.

Hence, for the 41 knot, we have 3 eigenvalues, λ1(v), λ2(v) = 1/λ1(v), λ3 = 1, where

λ1,2 =
1

2v2

(
1− v − 2v2 − v3 + v4 ±

√
D
)
,

D := (1− v − 2v2 − v3 + v4)2 − 4v4 = (1 + v)2(1− v)2(1 + v + v2)(1− 3v + v2). Hence, λ1 = λ2 for
v = ±1, e2πi/3, e4πi/3 ∈ S

1. Thus, the regularity condition does not hold.

5. A THIRD-ORDER q-DIFFERENCE EQUATION

Consider a third-order inhomogeneous q-difference equation of the form
3∑

j=0

Aj(q
n, q)fn+j(q) = B(qn, q), (28)

where Aj ≡ Aj(q
n, q), B ≡ B(qn, q) are

B = q2n+4(qn+1 + 1)(qn+2 + 1)(q2n+1 − 1)(q2n+3 − 1)(q2n+5 − 1),

A0 = q7n+9(q2n+4 − 1)(q2n+5 − 1),

A1 = q2n+5(q2n+2 − 1)(q2n+5 − 1)(1− qn+1 − q2n+1 + q2n+2 + q2n+3 − q2n+4

+ q3n+2 + q3n+5 + 2q4n+5 − q5n+6),

A2 = q(q2n+4 − 1)(q2n+1 − 1)(−1 + 2qn+2 + q2n+2 + q2n+5 − q3n+4 + q3n+5

+ q3n+6 − q3n+7 − q4n+7 + q5n+9),

A3 = (q2n+2 − 1)(q2n+1 − 1). (29)

The initial conditions for (28) are

fn|n=1 = q − 1,

fn|n=2 = (q2 − 1)(−q6 + q5 − q4 + 2q3 − q2 + q),

fn|n=3 = (q3 − 1)(q17 − q16 − q15 + 2q14 − q13 − 2q12 + 3q11 − q10 − 3q9 + 4q8 − q7

− 2q6 + 3q5 − q3 + q2). (30)

Lemma 1. The solution to problem (28), (30) is fn(q) = (qn − 1)J ′
−52(n, q), where J ′

−52(n, q) =

J ′
52(n, q

−1) and the colored Jones function for the 52 knot is given by (16), (17), and (19).

Proof. At first, we find the corresponding to (28) fourth-order homogeneous q-difference equation.
Indeed, the solution of (28) satisfies the following equation

4∑

j=0

bj(q
n, q)fn+j(q) = 0, (31)

where the coefficients bj := bj(q
n, q) are

b0 =
q5n+5(qn+2 − 1)

(qn+1 + 1)(q2n+1 − 1)(q2n+3 − 1)
, b4 = − qn+2 − 1

q2n+6(qn+3 + 1)(q2n+5 − 1)(q2n+7 − 1)
,

b1 =
q(qn+1 − 1)

(
1− qn+1 − (q − 1)(q2 − 1)q2n+1 + (q3 + 1)q3n+2 + 2q4n+5 − q5n+6

)

(qn+2 + 1)(q2n+1 − 1)(q2n+3 − 1)
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− q5n+10(qn+3 − 1)

(qn+2 + 1)(q2n+3 − 1)(q2n+5 − 1)
,

b2 =
(qn+2 − 1)(q5n+9 − q4n+7 − (q − 1)(q2 − 1)q3n+4 + (q3 + 1)q2n+2 + 2qn+2 − 1)

(q2n+3 − 1)(q2n+5 − 1)q2n+3(qn+1 + 1)

−
q(qn+2 − 1)

(
1− qn+2 − (q − 1)(q2 − 1)q2n+3 + (q3 + 1)q3n+5 + 2q4n+9 − q5n+11

)

(q2n+3 − 1)(q2n+5 − 1)(qn+3 + 1)
,

b3 =
1

q2n+4(qn+2 + 1)(q2n+5 − 1)

[
qn+1 − 1

q2n+3 − 1

− (qn+3 − 1)(q5n+14 − q4n+11 − (q − 1)(q2 − 1)q3n+7 + (q3 + 1)q2n+4 + 2qn+3 − 1)

q(q2n+7 − 1)

]
. (32)

Secondly, the system (31) can be rewritten in the operator form

P (q,Q,E)f ≡

⎛

⎝
4∑

j=0

bj(Q, q)Ej

⎞

⎠ f = 0,

where the operators q,Q and E are defined in (12). Further, let us put (cf. (13))

α(t,M,L) := P (q,Q,E)|q=t4 ,L=E,Q=M2.

Using (32), we obtain (see AJ conjecture in Section 2.2)

α(t,M,L)|t=−1 =
1− L

(M2 + 1)2(M4 − 1)M4
A−52(M,L),

where A−52(M,L) is defined in (15). Using Aj defined in (29) we write

Ãj(q
n, q) := (qn+j − 1)Aj(q

n, q), j = 0, 1, 2, 3. (33)

Then, the q-difference equation for the colored Jones function of the −52 knot is (cf. [18, p. 1575])
3∑

j=0

Ãj(q
n, q)J ′

−52(n+ j, q) = B(qn, q). (34)

Finally, the initial conditions for (28) are (cf. (21)) fn|n=k = (qn − 1)J ′
−52(n, q)|n=k, k = 1, 2, 3. �

Remark. We note that the regularity condition does not hold for the q-recurrences (31)–(32). Indeed,
put qn = v and q = 1 in the coefficients bj(qn, q) and obtain

b0(v, 1) =
v5

(v + 1)3(v − 1)
, b1(v, 1) =

1− v + 2v3 + 2v4 − 2v5

(v + 1)3(v − 1)
,

b2(v, 1) =
v6 − v5 − 2v4 − 3v3 − 2v2 − v + 1

v2(v + 1)3
,

b3(v, 1) =
−v5 + v4 − 2v2 − 2v + 2

v2(v + 1)3(v − 1)
, b4(v, 1) = − 1

v2(v + 1)3(v − 1)
.

The characteristic polynomial for (31) is

P (v, λ) =

4∑

j=0

bj(v, 1)λ
j = −

(λ− 1)
(
λ3 + λ2a2(v) + λa1(v) + v7

)

v2(v + 1)3(v − 1)
, (35)

where

a2(v) := v5 − v4 + 2v2 + 2v − 1,

a1(v) := −v7 + 2v6 + 2v5 − v3 + v2 = −v2(v5 − 2v4 − 2v3 + v − 1). (36)

It can be easily checked (details see below) that there exist points v ∈ S
1 such that DscλP (v, λ) = 0.
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The q-recurrence relations (28)–(30) have been presented to us by Stavros Garoufalidis1). Being
motivated by the Volume Conjecture to develop technique for asymptotic analysis of the solutions of
q-difference equations, we have started in preprint [5] to investigate the asymptotics of the polynomials
J̇n(q) := fn(q) to problem (28)–(30) in a double scale as

q → 1, n → ∞, qn = z ∈ K � C. (37)

Here we report on some first steps in this direction.

5.1. Homogeneous Problem. New Variables
To find the asymptotics of a sequence of polynomials defined by inhomogeneous recurrences, we first

construct an asymptotic expansion basis of solutions to the homogeneous problem
−→
Qn+1(q) = An

−→
Qn(q),

−→
Qn := (Qn, Qn+1, Qn+2)

T , (38)

where the elements of the transition matrix

An =

⎛

⎜⎜⎜⎝

0 1 0

0 0 1
A0

A3

A1

A3

A2

A3

⎞

⎟⎟⎟⎠

are given in (29).
Instead of the basic variables q and n, we will consider the following parameters. We will distinguish

between large N and current n:

N → ∞,
n

N
= t ∈ [0, 1].

Next, recall the previously introduced variable z := qn. Finally, define a parameter H such that

H := N ln q, i.e., qN =: eH ⇒

⎧
⎨

⎩
qn = z = etH

q = exp

(
H

N

)
= 1 +

H

N
+ . . . ,

As a result, instead of the variables n, q and qn, the basic variables will be
(n, q, qn) −→ (tN,H/N, z).

In view of (8) we have H = 2πi. The small parameter for the power expansions will be (1/N).

5.2. Spectral Curve of the Homogeneous Problem. Branch Points
Substituting into the characteristic equation

det(An − Iλ) = 0 (39)

the limit values qn =: z, q =: 1, we obtain the equation

λ(z) : λ3 + a2(z)λ
2 + a1(z)λ+ z7 = 0 (40)

for the limiting spectral curve, where a1 and a2 are defined in (36).
The genus of the algebraic function λ(z) is 2. It has eight branch points, two of them lie on the unit

circle centered at origin

z1,2 =
1

4

(
3−

√
13 + 16

√
2± i

√

−6 + 6

√
13 + 16

√
2− 16

√
2

)
, (41)

their numerical values are equal to z1,2 = −0.7422176660 ± i0.6701588892.
Note also that although the points z = ±1 are not branch points, however at these points all three

branches of the function λ(z) = {λj(z)}2j=0 coincide:

λ0(±1) = λ1(±1) = λ2(±1). (42)

1)Private communication.
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5.3. Road Map for the Asymptotics

Recall that our goal is to find the asymptotics (8)

lim
N→∞

1

N
ln |J̇N (q)|

∣∣∣
q=e

2πi
N

for the q-holonomic system {J̇n(q)} defined by recurrence relations (28)–(29) and the initial condi-
tions (30). That is, if we consider the polynomial J̇n(q) =: Q̇n(q, q

n) as a function of two variables

q = e
2πi
N and z := qn, then we start with the functions {Q̇(q, qn)}3n=1 taken at the points q, q2, q3, and

calculating the functions {Q̇(q, qn)}Nn=4 by (28)–(29) at the consecutive roots of unity z := qn, moving
with respect to z along the unit circle from z := q to z := qN = e2πi, we come to Q̇(q, qN ). To determine
lim

N→∞
Q̇n(q, q

N ) we first find the asymptotics of the basis of solutions to the homogeneous problem (38)

for z � K for compact sets K covering {|z| = 1}.

Let us note a circumstance that complicates the task. The unit circle does not lie entirely within the
zone where the eigenvalues are separated: our path along {eiφ}2πiφ=0 starts and ends in the zone where the
eigenvalues are close to each other (the neighborhood of the point 1), and also along the path such zones
appear in the neighborhoods of the points z1,−1, z2, see (41) and (42). Therefore, after finding this basis
in the zone of separated eigenvalues, in order to find a global (along the entire circle) asymptotic basis
of solutions of the homogeneous problem, we have to find bases in four local zones close to eigenvalues
(in the neighborhood of the points 1, z1,−1, z2) and the transition matrix for the basis in the zone of
separated eigenvalues at the entrance and exit from local zones, where eigenvalues are close.

Finally, having at our disposal an asymptotic expansion of the general homogeneous solution along
the whole unit circle, by the method of variation of constants, we find the general solution of the
inhomogeneous problem (28), (29), which we match with the initial data (30). The special solution
obtained in this way for the inhomogeneous problem with the help of the asymptotic basis of the
homogeneous problem, we can continue from the initial zone (the neighborhood of the point z = 1)
along the whole circle to the finite zone which is the neighborhood of the point z = e2πi.

In the present paper, we construct the spectral curve parametrization which is needed for realisation
of this plan.

5.4. Spectral Curve Parametrization

Theorem 2. Let s ∈ C. Then for the points of the curve λ(z), see (40), we have
⎧
⎪⎨

⎪⎩
z =

d+ 1

d− 1
, d =

(
R3(s) + 2

R3(s)− 2

)1/2

,

λ = L(z, s) = (s+ 1)z2 − s(s+ 2)(s2 + s− 1)z + s2(s+ 2),

(43)

where

R3(s) :=
s3 + 2s2 + s− 1

s(s+ 1)
. (44)

Moreover, for the branches of λ(z) we have

λj(z) = L(z, sj), where {sj}2j=0 : R3(s0) = R3(s1) = R3(s2). (45)

Remark. If for some s =: s0 by (43) we have the value of the branch λ0 = L(z(s0), s0), then to
find other branches λ1,2 by (45) we have to solve the cubic equation R3(s0) = R3(s) to find s = s1, s2.
In practice, however, we reduce the problem to a quadratic equation as follows. In the equation in
(40), we replace z with its parametrization by variable s (the first line in (43)). We divide the resulting
expression (depending on λ and s) by (λ− L(z, s)), while in the expression L(z, s) (the second line
in (43)) parametrization is also substituted. Symbolic calculations allow us to implement this division
procedure. The result is a quadratic equation for another branches λ1 and λ2.
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Proof of Theorem 2. Put

L := λ+
1

λ
, Z := z +

1

z
. (46)

If we add (40) to these equations and exclude the variables z and λ, then we obtain an equation for the
algebraic function L(Z) of the form

L3 + (Z5 + 6Z2 −Z4 − 5Z3 − 8 + 7Z)L2

+ (16 − 20Z3 + 2Z6 + 16Z − Z7 + 3Z2 + 8Z5 − 9Z4)L
− 16Z5 + 64 + 34Z4 − 48Z + 2Z7 − 4Z6 + 45Z3 − 88Z2 = 0.

The algebraic curve L(Z) has genus 0, genL(Z) = 0, therefore, there is a uniformization by rational
functions for it, which can be chosen as follows

⎧
⎪⎨

⎪⎩

L = −−1 + 3s+ 4s2 − 5s3 − 9s4 + s5 + 4s6 + s7

s2
;

Z =
s3 + 2s2 − 1 + s

s(s+ 1)
.

(47)

Using this uniformization and (46), we can find the parametrization of the spectral curve λ(z). Note first
the useful formula

(
Z − 1

Z

)(
L − 1

L

)
= −(s− 1)(s + 1)(s2 + 2s− 1)(s3 + 4s2 + 3s− 1)(s3 − s− 1)

s3
,

with which we can choose the correct branch of the square root for the parametrization of coordinates of
the curve using the uniformizing variable s:

λ =
1

2s2

(√
s3 + 4s2 + 3s − 1(1− s2)(s2 + 2s− 1)

√
s3 − s− 1

+ 1− 3s− 4s2 + 5s3 + 9s4 − s5 − 4s6 − s7
)
;

z =

(√
s3 − s− 1 +

√
s(s+ 2)2 − s− 1

)2

4s(s + 1)
. (48)

Note that a different choice of branches leads to
1

λ
=

−1

2s2

(√
s3 + 4s2 + 3s− 1(1− s2)(s2 + 2s − 1)

√
s3 − s− 1

+ 1− 3s− 4s2 + 5s3 + 9s4 − s5 − 4s6 − s7
)
;

1

z
=

(
√
s3 − s− 1−

√
s(s+ 2)2 − s− 1)2

4s(s+ 1)
.

From here, see (48), we can derive the second relation in (43):

λ = L(z, s) = (s+ 1)z2 − s(s+ 2)(s2 + s− 1)z + s2(s+ 2),

assuming that s is a uniformization variable from (47).

Now we get the parametrization of the variable z in the form of the first relation in (43). We know, see
(46), (47), and (44), that

z +
1

z
= R3(s) ⇐⇒ Z = R3(s) :=

s3 + 2s2 + s− 1

s(s+ 1)
. (49)

The inverse Zhukovsky transform can be written as

z =
R3

2
+

R3 − 2

2

√
R3 + 2

R3 − 2
,

√
R3 + 2

R3 − 2
=: d.
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Then

zd− d =
R3

2
d+

R3

2
+ 1− d =

R3

2
+

R3 − 2

2
d+ 1 = z + 1,

that is

d =
z + 1

z − 1
and z =

d+ 1

d− 1
.

Note that the parametrization (43) proved in the theorem is more compact and convenient compared
to (48) (in particular, to calculate λ we use the already calculated variable z).

Finally, we comment on (45). Let’s go back to (49). The rational function R3 is of order 3, hence

∀Z ∈ C ∃{sk}2k=0 : Z(s0) = Z(s1) = Z(s2).

Theorem 2 is proved. �
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