Skip to main content
Log in

Radial Oscillations of a Shell-Covered Gas Bubble in a Viscoelastic Liquid

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a modified Rayleigh–Plesset equation is derived, which takes into account the radial oscillations of a gas bubble covered with a viscoelastic shell and located in a viscoelastic liquid. For the case of small oscillations of the inclusion with a small amplitude, a comparison is made of the dependence of the damping parameter on the disturbance frequency according to the rheological model of Kelvin–Voigt and Maxwell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. L. D. Goldberg, J. S. Raichlen, and F. F. Forsberg, Ultrasound Contrast Agents. Basic Principles and Clinical Applications (Martin Dunitz, London, 2001).

    Google Scholar 

  2. V. Sboros, ‘‘Response of contrast agents to ultrasound,’’ Adv. Drug Deliv. Rev. 60, 1117–1136 (2008).

    Article  Google Scholar 

  3. X. Ma, X. Wang, K. Hahn, and S. Sanchez, ‘‘Motion control of urea-powered biocompatible hollow microcapsules,’’ ACS Nano 10, 3597–3605 (2016).

    Article  Google Scholar 

  4. D. A. Gubaidullin and Yu. V. Fedorov, ‘‘Acoustic waves in a liquid with gas bubbles covered by a viscoelastic shell,’’ Fluid Dyn. 54, 270–278 (2019).

    Article  Google Scholar 

  5. C. Hua and E. Johnsen, ‘‘Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium,’’ Phys. Fluids 25, 083101 (2013).

    Article  Google Scholar 

  6. D. A. Gubaidullin and Yu. V. Fedorov, ‘‘Wave dynamics of coated inclusions in a viscoelastic medium,’’ J. Appl. Mech. Tech. Phys. 61, 517–524 (2020).

    Article  MathSciNet  Google Scholar 

  7. A. Katiyar and K. Sarkar, ‘‘Effects of encapsulation damping on the excitation threshold for subharmonic generation from contrast microbubbles,’’ J. Acoust. Soc. Am. 132, 3576–3585 (2012).

    Article  Google Scholar 

  8. D. A. Gubaidullin, D. D. Gubaidullina, and Yu. V. Fedorov, ‘‘The influence of heat transfer on the acoustics of a liquid with encapsulated bubbles,’’ Lobachevskii J. Math. 41 (7), 1202–1205 (2020).

    Article  MathSciNet  Google Scholar 

  9. V. Sh. Shagapov, M. N. Galimzyanov, and I. I. Vdovenko, ‘‘Characteristics of the reflection and refraction of acoustic waves at normal incidence on the interface between ’pure’ and bubbly liquids,’’ High Temp. 57, 256–262 (2019).

    Article  Google Scholar 

  10. D. A. Gubaidullin and Yu. V. Fedorov, ‘‘Sound waves in a liquid with polydisperse vapor-gas bubbles,’’ Acoust. Phys. 62, 179–186 (2016).

    Article  Google Scholar 

  11. V. Sh. Shagapov, M. N. Galimzyanov, and I. I. Vdovenko, ‘‘Characteristics of the reflection and refraction of acoustic waves at an ’oblique’ incidence on the interface between ’pure’ and bubbly liquids,’’ High Temp. 57, 425–429 (2019).

    Article  Google Scholar 

  12. D. A. Gubaidullin and Yu. V. Fedorov, ‘‘Effect of phase transitions on the reflection of acoustic waves from the boundary of a vapor-gas-liquid mixture,’’ High Temp. 56, 306–308 (2018).

    Article  Google Scholar 

  13. I. K. Gimaltdinov and S. A. Lepikhin, ‘‘Characteristics of the influence of phase sliding and initial pressure on the dynamics of detonation waves in bubbly liquid,’’ High Temp. 57, 420–424 (2019).

    Article  Google Scholar 

  14. D. A. Gubaidullin and Yu. V. Fedorov, ‘‘Peculiarities of acoustic wave reflection from a boundary or layer of a two-phase medium,’’ Acoust. Phys. 64, 164–174 (2018).

    Article  Google Scholar 

  15. Yu. Zhang, Zi. Jiang, J. Yuan, T. Chen, Yu. Zhang, N. Tang, and Xi. Du, ‘‘Ifluences of bubble size distribution on propagation of acoustic waves in dilute polydisperse bubbly liquids,’’ J. Hydrodyn. 31, 50–57 (2019).

    Article  Google Scholar 

  16. D. A. Gubaidullin, D. D. Gubaidullina, and Yu. V. Fedorov, ‘‘Acoustics of a two-fractional polydisperse bubbly liquid with phase transitions,’’ Lobachevskii J. Math. 40 (6), 740–744 (2019).

    Article  MathSciNet  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory and Elasticity (Pergamon, New York, 1959).

  18. A. A. Doinikov and P. A. Dayton, ‘‘Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents,’’ J. Acoust. Soc. Am. 121, 3331–3340 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Gubaidullin, D. D. Gubaidullina or Yu. V. Fedorov.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, D.A., Gubaidullina, D.D. & Fedorov, Y.V. Radial Oscillations of a Shell-Covered Gas Bubble in a Viscoelastic Liquid. Lobachevskii J Math 42, 2124–2128 (2021). https://doi.org/10.1134/S1995080221090109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221090109

Keywords:

Navigation