ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2021, Vol. 42, No. 4, pp. 735-742. (© The Author(s), 2021. This article is an open access publication,
corrected publication 2021.

Punctual Categoricity Relative to a Computable Oracle
I. Sh. Kalimullin'* and A. G. Melnikov?™
(Submitted by M. M. Arslanov)

IN. I. Lobacheuvskii Institute of Mathematics and Mechanics,
Kazan (Volga Region) Federal University, Kazan, 420008 Russia
2School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
Received November 4, 2020; revised November 25, 2020; accepted December 15, 2020

Abstract—We are studying the punctual structures, i.e., the primitive recursive structures on the
whole set of integers. The punctual categoricity relative to a computable oracle f means that
between any two punctual copies of a structure there is an isomorphism which togeteher with its
inverse can be derived via primitive recursive schemes augmented with f. We will prove that the
punctual categoricity relative to a computable oracle can hold only for finitely generated or locally
finite structures. We will show that the punctual categoricity of finitely generated structures is
exhaused by the computable oracles with primitive recursive graph. We also present an example of
locally finite structure where the punctual categoricity is provided by a primitive recursively bounded
computable oracle.

DOI: 10.1134/S1995080221040107

Keywords and phrases: primitive recursive function, computable function, algebraic structure,
finitely generated structure, locally finite structure.

1. INTRODUCTION

While classical algebra views algebraic structures up to isomorphism, the hallmark of computable
structure theory is the study of computable algebraic structures up to computable isomorphism. Such
investigations can be traced back to Malcev [1] who noted that already the vector space V, over Q of
infinite dimension has two computable presentations which are not computably isomorphic. In modern
terms, V4 is not computably categorical. Over the past 50+ years computable structure theory has
accumulated a plethora of examples and results supporting the intuition that, in a natural algebraic
class, computably categorical structures tend to be algebraically tame. This intuition can be made
formal using the closely related notion of relative computable categoricity [2]. Although very complex
examples of computably categorical structures are known to exist (e.g., [3, 4]), algebraically interesting
computable structures tend to be not computably categorical. This phenomenon led to an extensive
study of structures categorical relative to a non-computable oracle; we cite [2, 5] for the classical results
and the general framework of AY-categorical structures, and we cite [6—10] for several more recent
results on this topic.

Similarly to computable structure theory, one of the main topics of feasible structure theory is
the study of computationally feasible structures up to feasible isomorphism. Here “feasible” can be
interpreted in many different ways, e.g, automatic, polynomial-time, primitive recursive, or punctual (to
be defined). The general intuition is that, when compared to computably categorical structures, feasibly
categorical structures tend to be even more rare (but see [11, 12] for artificial counterexamples). For
instance, a structure is automatically categorical iff it is finite [13]. Similarly, only finite structures can
be polynomial-time categorical [14]. An infinite locally finite structure cannot be primitively recursively
categorical; this in particular implies that no infinite relational structure can be primitively recursively

“E-mail: Iskander.Kalimullin@kpfu.ru
"E-mail: alexander. g.melnikov@gmail.com

735

736 KALIMULLIN, MELNIKOV

categorical [14]. Nonetheless, there has been essentially no systematic study of feasible structures
categorical relative to an oracle; the only exception is the brief note [15]. The main aim of this paper
is to initiate a systematic theory of punctual categoricity relative to an oracle; we note that in contrast
with computable structure theory, our oracles will tend to be computable. To discuss our results, we
need to explain what punctual computability means.

According to[12], a structure in a finite language is punctual if its domain is N, and its operations and
relations are primitive recursive. This definition is similar to the notion of a primitive recursive structure
suggested by Maltsev [1] and then used by Cenzer and Remmel [16]. The only subtle but important
difference is that the domain has to be the whole of N and not merely a primitive recursive subset of N.
This subtle strengthening of the definition led to an unexpectedly rich theory of punctual structures; we
cite the survey [17] for a detailed exposition of the new emerging theory.

All results in the previous works on punctual categoricity can be subdivided into two categories:

e The study of punctually categorical structures. This means that between every pair of punctual
copies of the structure there is a primitive recursive isomorphism with a primitive recursive
inverse.

e Examples of punctual structures with punctually unbounded isomorphisms. This means that
between each pair of punctual copies of the structure every isomorphism can not be bounded by a
primitive recursive function.

Moreover, in the second case the growth of the isomorphism usually is tightly connected with its
punctual complexity due the primitive recursiveness of the graphs of such isomorphisms. It is easy
to see that if the graph of a function is primitive recursive then either the function is primitive recursive
or, otherwise, it has to be primitively recursively unbounded.

For example, if a punctual structure is finitely generated, then there is a “standard” copy of the
structure which is the term algebra upon some fixed finite set of generators. This copy can be primitively
recursively isomorphically mapped onto every other punctual copy of the structure. However, the inverse
of this isomorphism is typically not primitive recursive, although its graph is. This effect can be exploited
to code every computable function with a primitive recursive graph to the complexity of isomorphisms
of finitely generated structures, in the following sense. For two functions f,g : N — N, write f <pgr g
if f can be derived from g and the basic primitive recursive functions using finitely many applications of
composition and primitive recursion. We write f =pgr g if f <pr g and g <pgr f. The theorem below
essentially says that every computable function f with a primitive recursive graph can serve as the degree
of punctual categoricity of a finitely generated structure, much in the spirit of the well-known analogous
results for computable structures; we will discuss this in a bit more detail at the end of the introduction.

Theorem 1 (Kalimullin, Melnikov, Ng [15]). For every computable function f with a primitive
recursive graph there is a finitely generated punctual structure A such that

1) there is a punctual copy B of A such that for every isomorphism g from B to A we have
I <prg;

2) for every punctual copy C of A there is an isomorphism h from C to A such that h,h=! <pg

Corollary 1. For every computable function f with a primitive recursive graph there is a finitely
generated punctual structure A such that for every function g the following two conditions are
equivalent:

a) f <prg;
b) [or every punctual copy C of Athereis an isomorphism h from C to Asuch that h,h™! <ppg g.

Our primary technical goal is to understand which punctual structures A and computable functions
f can satisfy the above two properties, and also whether Theorem 1 can be generalized beyond finitely
generated structures. Our first result shows that the second condition of Theorem 1 alone puts a strong
algebraic restriction on the potential algebraic type of the structure.

Theorem 2. et A be a punctual structure and f be a computable function such that or every
punctual copy C of A we have an isomorphism h:C — A such that h,h=' <pr f. Then the
structure Ais either finitely generated or is locally finite.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol.42 No.4 2021

PUNCTUAL CATEGORICITY RELATIVE 737

Considering only finitely generated structures we can easily illustrate that every function f with the
properties 1)—2) from Theorem 1 must be =pr-equivalent to a function with a primitive recursive graph,
as follows. For the term algebra T of A upon a fixed finite set of generators, fix primitive recursive
isomorphisms hy : T — A and hy : 7 — B and consider the isomorphism g = hg o h2_1 :B— A We
have

1 1
f<prhiohy <prhy <pgrf

so that f =pp h2_1 and the graph of h2_1 is obviously primitive recursive. As we observed earlier, a
primitively recursively bounded function with a primitive recursive graph must be primitive recursive.
Therefore, f either is primitive recursive, or is not primitively recursively bounded. Our second result
below illustrates that the same property as above holds if we assume the conditions of Corollary 1.

Theorem 3. Let f be a computable function and let Abe a finitely generated punctual structure
such that for every computable function g the following two conditions are equivalent:

a) f <pr g
b) for every punctual copy C of A there is an isomorphism h from C to Asuch that h,h=" <pp g.
Then there is a a computable function f' =pgr f such that the graph of [’ is primitive recursive.

[f a structure is not finitely generated then the behavior of its isomorphisms, of course, can potentially
be much more complicated. Nonetheless, in all known examples in the literature, a punctual structure is
either punctually categorical, or it is built so that all isomorphisms unbounded from or to the structure
are not primitively recursively bounded.

All these results and examples raise the question: suppose a punctual A has the property that for every
other punctual copy B and each isomorphism f : A — B, both f and f~! are bounded by a primitive
recursive function. Does this imply that A is punctually categorical? Also, can we extend Theorem 1 to
PR-degrees of functions whose graphs are not primitive recursive? Recall that a function with a primitive
recursive graph either is primitive recursive or must be primitively recursively unbounded. Also recall
that, in the finitely generated case, a primitively recursively bounded isomorphism must be primitive
recursive; see the discussion before Theorem 3. What if we drop the condition of being finitely generated?
By Theorem 2, such a generalization of Theorem 1 must be witnessed by a locally finite structure. Our
third (and main) result says that, remarkably, the answer to both questions is negative.

Theorem 4. There is a punctual locally finite structure A which is not punctually categorical
such that for every punctually categorical copies B,C of A there is a computable isomorphism h,
which together with its inverse is bounded by a primitive recursive function.

The proof of Theorem 4 relies on the relatively complex “pressing strategy” introduced in [12] and
then explained in much detail in[11, 17]. The strategy is combinatorially quite involved, but if the reader
is familiar with the strategy they should have no problem understanding the proof. Since the strategy
has been explained multiple times in the literature, we decided to keep the paper short and give only a
hint to how it works. The reader will have to either take that it works for granted or look it up in the
aforementioned papers.

Our results and questions are analogous to the study of degrees of computable categoricity initiated
in[18] and the further developed in, e.g.,[19—23]. Theorem 3 is similar to the following result on degrees
of categoricity for structures with a finite automorphism group [24, 25]: the degree of categoricity of a
structure A with |Aut(A)| < oo can be directly decomposed into the degrees of isomorphisms between
finitely many computable copies of the structure. Turetsky[26] has constructed an example of a structure
having infinite automorphism group whose degree of categoricity does not have this decomposability
property. These results motivate similar questions for punctual categoricity, but in the punctual case
finitely generated and locally finite structures are the most interesting subclasses. In particular, we will
see that the proof of Theorem 3 shows that the function f up to =pgr-equivalence can be decomposed
into finitely many isomorphisms ug, u1,...,u,—1. It is unknown, however, whether we can adapt
Theorem 1 to realise such decomposition for arbitrary n > 1; we leave this as an open problem.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol.42 No.4 2021

738 KALIMULLIN, MELNIKOV
2. PROOF OF THEOREM 2

Suppose the structure A is not finitely generated and is not locally finite. Fix a computable listing
of all pairs of functions (hj, gi)icw such that h; <pr f and g; <pr f. We are building a punctual copy
C = A meeting the requirements

R; : g;is an isomorphism from AtoC = g; o h; # id
for every ¢ € w. The requirements will be met one-by-one in a finitary fashion; in particular, there will be
no injury.
To satisfy R;, we will use a finite tuple C; C C isomorphically mapped to A; C A. Fori = 0 let Ag be

any finite tuple in A which generates and infinite substructure of .A which is not the whole of A, and let
Co be the exact copy of Ap.

To meet R;, assume the finite tuples C; and A; have already been defined. Keep extending C;
punctually by adding a few more new elements generated by C; and mapping them to the naturally
corresponding elements generated by .4;. Meanwhile, do the following.

1. For every ¢ € C;, compute the values h;(c) and g;(h;(c)).

2. li gi(hi(c)) # ciorsome ¢ € C; we are done. Otherwise, if g;(h;(c)) = cforevery ¢ € C;, we start to
compute the value g;(a) for each a € A until we find an evidence of non-injectivity of g;, or an evidence
that g; does not preserve an operation from the language of A.

Note that, since A is not finitely generated we should have an @ € A which can not be generated from
{hi(c)|c € C;}. But the value g;(a) is forced to be generated from C;, so that for some term ¢ we have

gi(a) =t(er, ... en) = tgi(hi(er)), - -, gi(hi(cn)))

forsomecy,...,c, € C;. Thus, g; either does not respect an operation from the term ¢, or is not injective
since

gi(a) = t(gi(hi(c1)), - -, gi(hi(cn))) = gi(t(hicr), - .. hi(en))) and a # t(hi(cr), ..., hi(cn)).
Therefore, the computation in 2. eventually halts. In either case, the requirement is clearly met.

To make sure that C is isomorphic to A, let A; 11 be the finite part of A enumerated so far together with
the element having the smallest index which has not yet been listed in (A;). Define C;y; by introducing
an isomorphic image of this extra element to C. Go to the next requirement.

3. PROOF OF THEOREM 3

Let f be a computable function f and let A be a finitely generated punctual structure such that for
every computable function g the following two conditions are equivalent:

a) f <prg;

b) for every punctual copy C of A there is an isomorphism h from C to A such that h, h=! <pg g.

Fix also the punctual term algebra 7 of A over a fixed finite set of generators. There is a series of
obvious facts about 7 which are collected in the following lemma.

Lemma 1.

1) IfC is a punctual copy of A then every isomorphism from T onto C is primitive recursive. In
particular, every automorphism of T is primitive recursive.

2) If C is a punctual copy of A and u,v are isomorphisms from C onto T thenu =prv <pgr f.

3) There is a uniformly computable list {u;};c,, of computable functions which contains all
isomorphisms from punctual copies of A onto T and almost null functions (i.e., u;(x) =0
beginning with some x). In particular, u; <pr f and the graph of w; is primitive recursive for
every i (but not uniformly).

4) For every isomorphism h from one punctual copy of A onto another punctual copy of A, we
have h <ppr u; for some i.

Proof. 1) Let w be an isomorphism from 7 onto C. Then for each term ¢ € T the value w(t) can
be computed immediately as the same term from the w-images of the generators. The w-images of the
generators can be fixed non-uniformly.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol.42 No.4 2021

PUNCTUAL CATEGORICITY RELATIVE 739

2) The equivalence u =pg v follows from 1) since u o v=! and v o w1 are primitive recursive auto-
morphisms of 7 such that u = (uov™!) owvand v = (vou~!) ou. Also we know from the conditions
on f that, for some isomorphism u from C onto T, we have u <pp f.

3) The list {u;}ie., can be obtained from a uniformly computable list of all triples {.A;, p;, gp{}iew,

where A; is a punctual structure in the language of A, p; is a primitive recursive function, and gp{ is
f

the i-th primitive recursive scheme augmented with f. To define w;, copy the function ¢; until it is
discovered that either p; o gozf = id, or gp{ op; #id, or p;(T) # A;. In this case set u; equal to 0 for

almost all inputs.
4) Follows immediately from 1)—3). 0

For a sequence of functions {v; };e., denote the function v({i, z)) = v;(x) by v = @®;v;. The notation
Bi<nv; means that the components v; in ®;v; are null functions for i > n.

Note that if for the sequence {u;};c,, from Lemma 1 and some n we have f =pr ®;<nu; then
Theorem 3 is witnessed by the function f' = @;,u; whose graph is primitive recursive. Otherwise,
if f £pr @i<nu; for every n, then we get a computable function g for which the equivalence between a)
and b) does not hold:

Lemma 1. Let f be a computable function and let {u;}ie, be a uniformly computable list of
functions such that [Lpr @i<cpu; for every n. Then there is a computable function g such that
f £pr gandu; <pp g or every i.

Proof. The proof is similar to the proof of well-known Spector’s Theorem for Turing reducibility with
obvious modifications. We give more details.

We are constructing a computable function g stage-by-stage defining a finite function g,, at each
stage n such that g, D g,—1. Letg_1 = 0.

At a stage n > 0 we ensure that f # ¢, for the n-th primitive recursive scheme ¢,, augmented by
g = Ungn. To do this we consider the computable function

In—1((i,x)), if gn—1((i,z)) is defined;
hn((i, 7)) = S wi(x), il gn1({i,z)) is undefined and i < n;
0, otherwise.

[tis easy to see that h,, <ppr @;<nuy, sothat we must have f Lpgr h,, and hence f # goﬁ”. Therefore,
we can compute a finite part g,, of hp, gn—1 C gn C hy,, Which forces the inequality f # ¢n.

By the construction above, if ¢;({i, z)) is undefined then u;(z) = g({(i, z)), so that for each i there are
only finite many « for which we can have u;(x) # g({(i,x)). Hence, u; <ppr g for every i. O

4. PROOF OF THEOREM 4

We build a rigid punctual structure A which is not punctually categorical but such that, between
any pair of punctual presentations of \A, the unique isomorphism between these two copies is punctually
bounded.

The pressing strategy. We explain only the idea. For details, see[11, 12, 17]. The main purpose of
this strategy is to “press” the opponent’s punctual structure to reveal the needed segment of his structure
within a precomputed number of stages. The basic idea is as follows. Fix a language consisting of three
unary functions s,u,p. Begin building A with a sequence of u-cycles of length 2 arranged into an
omega-chain using s. We call the first element in the chain the origin of the chain. We also map every
2-cycle to the origin of the chain using p.

Keep padding the structure with 2-cycles until the first primitive recursive structure Py gives a
sequence of two consequent 2-cycles. If Py shows some other configuration which does not even look
like a chain of cycles, then Py is not isomorphic to A. Ii P reveals (say) a 3-cycle instead, we can
restrain 3 and agree to never use it in the construction.

Thus, if Py = A, then we must eventually see two or more consequent 2-cycles connected by a unary
function in Py. As soon as we the two consequent 2-cycles are discovered, we switch the gears and

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol.42 No.4 2021

740 KALIMULLIN, MELNIKOV

continue building the w-chain in A using a sequence of alternating 2-cycles and 4-cycles. Thus, at
some later stage we will have the follwing configuration in A:

2—2—-2—...(ngtimes)—2—2—4—2—-4—2—4-2,

where ng depends on the stage at which we switched gears.

Every cycle in the sequence is connected to the left-most point in the omega-chain using another
unary function. Thus, given a 2-cycle in Py we can instantly compute the origin with the speed of the
enumeration of Pp; just evaluate the unary function on any point of the 2-cycle. Since ny depends on
ly on the speed of the enumeration of Py, we know that after at most ny many applications of the unary
function which was used to form the w-chain to the origin of the chain, we will generate the sequence of
two consequent 2-cycles in Py. If this does not happen, Py 2 A. This gives a way to match elements of
Py with the corresponding elements in .4 with a primitive recursive delay that depends on F.

At a later stage we use the sequence of 2-cycles and 4-cycles to press two structures at once, namely
Py and P;. We will wait until both of them respond by giving the sequence 2—4—2 or prove that they are
not isomorphic to .A. Then we switch gears again and will, for example, use the pattern 2—4—4 to press
three structures Py, P1, P», etc. This finishes the informal description of the idea. See [12] for further
details.

Terminating a chain. At the stage at which we decide to switch gears, we can choose to stop
building the w-like chain by (say) mapping its current end-point to itself. Then we can initiate a new
chain of cycles with a new origin. Every cycle in the new chain will be mapped to the new origin. It will
be completely disconnected from the previous chain. Then we can finish building the chain and initiate
a new one if necessary, etc.

Note that each such finite chain of cycles will have a unique isomorphism type. In A, let z; denote a
finite chain that is being constructed (i.e., has not been finished yet); we say that z; is currently open. If
at some stage the chain has been terminated, i.e., we have already finished building the chain and started
a new one, then we say that x; is closed.

Proof idea. The language of A consists the three unary functions s, u, p required to implement the
pressing strategy, one extra unary function v, and a unary predicate D.

The structure A will consist of pairs of finite chains, in the sense of the previous subsection. Every
element of such finite chain, perhaps with the exception of the last element, will satisfy D. At every stage
we will keep exactly two finite chains, say x; and y;, open. When we close x; and y;, which will happen
simultaneously, for exactly one of the two chains the end-point will satisfy D. Before the chains are
closed, these two chains will be kept identical. Furthermore the respective elements in x; and y; will be
mapped to each other using the unary function v. We say that these two chains are conjugate (via v) in

[t follows that, if P; & A, then it must reveal its versions of the two chains with a precomputed delay.
This will be used to show that the structure satisfies the primitive recursive boundedness stated in the
theorem. Nonetheless, we have the freedom to make the two chains non-isomorphic when we close
them. We use this for a straightforward diagonalization as follows.

Build the second punctual copy B of A and meet

p; : B — Ais not an isomorphism

using x; and y; as follows.

e Wait for a primitive recursive p; : A — B to converge on x; and y;. Let &; be the end-point of z;

e When x; and y; are ready to be closed, make sure that D(&;) # D(p;(&;)).

The formal construction. We simultaneously build A = B. To meet the i-th diagonalization
requirement, do the following substeps.

1. Initiate the enumeration of two conjugate chains z;* and y/! in A and also identical conjugate

chains z¥ and y? in B. Declare D(n) for every element of the chains, unless specified otherwise. The
isomorphism type of the chains is determined according to the pressing strategy.

2. Wait for p; : A — B to converge on the origins of z7* and y#*.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol.42 No.4 2021

PUNCTUAL CATEGORICITY RELATIVE 741

3. Ii the p;-images of the origins of z7* and y#* are not the (distinct) origins of ¥ and y?, then:
(a) Wait for a stage at which the chains can be declared closed according to the pressing strategy.
(b) Close the chains in both A and B, and proceed to 1. for the next requirement.

4. Otherwise, if the origins are mapped to the origins (but perhaps in a different order), wait for a
stage at which the chains can be declared closed according to the pressing strategy.

5. When the chains are declared closed, let & and p; be the end-points of x;“ and y;-“, respectively.
6. Declare D(&;) in A and ~D(p;(&)) in B.

7. Declare = D(p;) in A and D(p;(p;)) in B.

8. Proceed to the next diagonalization requirement.

The verification. 1t is clear that every diagonalization requirement is met, and thus A and B are
not punctually isomorphic. Note that A is rigid. To see why A has the property of primitive recursive
boundedness of the isomorphisms, suppose P; = P; = A. The pressing strategy ensures that every point
in P; can be primitively recursively matched with a point in one of the two chains which are currently
open, and thus the isomorphism is bounded by the function that takes the maximum index of the two
potential images; the same can be said about the inverse of the isomorphism inverse. Since the same
argument can be applied to P;, we can derive a primitive recursive bound on the isomorphism between
P; and P; as well as on its inverse. This finishes the proof of the theorem.

FUNDING

The work was supported by the Russian Science Foundation, project no. 18-11-00028. The second
author was supported by Rutherford Discovery Fellowship and the Marsden Fund of New Zealand.

OPEN ACCESS

This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated otherwise in a
credit line to the material. If material is not included in the article’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

REFERENCES

. A. Malcev, “Constructive algebras. [,” Usp. Mat. Nauk 16 (3), 3—60 (1961).
. C. Ash and J. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Vol. 144 of Studies
in Logic and the Foundations of Mathematics (North-Holland, Amsterdam, 2000).
3. R. G. Downey, A. M. Kach, S. Lempp, A. E. M. Lewis-Pye, A. Montalban, and D. D. Turetsky, “The
complexity of computable categoricity,” Adv. Math. 268, 423—466 (2015).
4. A. G. Melnikov and K. M. Ng, “Computable torsion abelian groups,” Adv. Math. 325, 864—907 (2018).
5. C. Ash, “Recursive labeling systems and stability of recursive structures in hyperarithmetical degrees,” Trans.
Am. Math. Soc. 298, 497—514 (1986).
6. R. Downey, A. G. Melnikov, and K. M. Ng, “Abelian p-groups and the Halting problem,” Ann. Pure Appl.
Logic 167, 1123—1138 (2016).
7. E.J. Barker, “Back and forth relations for reduced abelian p-groups,” Ann. Pure Appl. Logic 75, 223—249
(1995).
8. R. Downey, A. G. Melnikov, and K. M. Ng, “On 69-categoricity of equivalence relations,” Ann. Pure Appl.
Logic 166, 851—880 (2015).
9. A. G. Melnikov, “Torsion-free abelian groups with optimal Scott families,” J. Math. Logic 18, 1850002
(2018).
10. V. O. Gonzalez, “Computability in the class of real closed fields,” Ph.D. Thesis (Notre Dame Univ., 2014).
I1. R. Downey, N. Greenberg, A. G. Melnikov, K. M. Ng, and D. Turetsky, “Punctual categoricity and
universality,” J. Symbol. Logic (in press).

N —

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol.42 No.4 2021

742 KALIMULLIN, MELNIKOV

12. 1. S. Kalimullin, A. G. Melnikov, and K. M. Ng, “Algebraic structures computable without delay,” Theor.
Comput. Sci. 674, 73—98 (2017).

13. B. Khoussainov and A. Nerode, “Automatic presentations of structures,” in Logical and Computational
Complexity, Proceedings of the International Workshop LCC’94, Indianapolis, Indiana, USA, October
13—16, 1994 (1994), pp. 367—392.

14. P. E. Alaev, “Existence and uniqueness of structures computable in polynomial time,” Algebra Logic 55,
72—76 (2016).

15. 1. S. Kalimullin, A. G. Melnikov, and K. M. Ng, “The diversity of categoricity without delay,” Algebra Logic
56, 171-177 (2017).

16. D. Cenzer and J. Remmel, “Polynomial—time abelian groups,” Ann. Pure Appl. Logic 56, 313—363 (1992).

17. N. Bazhenov, R. Downey, 1. Kalimullin, and A. Melnikov, “Foundations of online structure theory,” Bull.
Symbol. Logic 25, 141—181 (2019).

18. E. B. Fokina, I. Kalimullin, and R. Miller, “Degrees of categoricity of computable structures,” Arch. Math.
Logic 49, 51-67 (2010).

19. B. F Csima, J. N. Y. Franklin, and R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy,”
Notre Dame J. Formal Logic 54, 215—231 (2013).

20. E. Fokina, V. Harizanov, and D. Turetsky, “Computability-theoretic categoricity and Scott families,” Ann.
Pure Appl. Logic 170, 699—717 (2019).

21. N. A. Bazhenov, “Degrees of autostability relative to strong constructivizations for Boolean algebras,”
Algebra Logic 55, 87—102 (2016).

22. N. A. Bazhenov and M. M. Yamaleev, “Degrees of categoricity of rigid structures,” Lect. Notes Comput. Sci.
10307, 152—161 (2017).

23. | N. A. Bazhenoy, [. S. Kalimullin, and M. M. Yamaleev, “Strong degrees of categoricity and weak density,”
Lobachevskii J. Math. 41, 1630—1639 (2020).

24. N. A. Bazhenov, 1. S. Kalimullin, and M. M. Yamaleev, “Degrees of categoricity vs. strong degrees of
categoricity,” Algebra Logic 55, 173—2177 (2016).

25. N. A. Bazhenoy, I. Sh. Kalimullin, and M. M. Yamaleev, “Degrees of categoricity and spectral dimension,” J.
Symbol. Logic 83, 103—116 (2018).

26. D. Turetsky, “Coding in the automorphism group of a computably categorical structure,” J. Math. Logic 20
(3) (2020, in press).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol.42 No.4 2021

