Skip to main content
Log in

A Review for Potential Applications of Zeolite-Based Nanocomposites in Removal of Heavy Metals and Escherichia coli from Drinking Water

  • REVIEWS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Water resources get contaminated with heavy metals and Escherichia coli (E. coli), among others due to human activities such as industrialization, municipal waste and agricultural production. The central water treatment processes such as coagulation and flocculation are no longer sufficient to remove these contaminants to acceptable levels by water standards. Additional treatment processes involving nanomaterials such as carbon nanotubes, graphene, metal oxides and zeolite nanocomposites have been reported with varying levels of efficacy. Zeolite nanocomposites are preferred for removal of water contaminants because of their chemical and physical stability at comparably low cost. In this work, adsorptive capacities for nanomaterials, possibilities of application of zeolite-nanocomposites and mechanisms for removal of heavy metals and disinfection of water are reviewed. The review shows that zeolite/Zinc oxide nanocomposite has removal efficiency of 93 and 89% for Lead II ions and Arsenic (V) respectively from water for an initial concentration ranging between 20 and 100 mg/L. Silver nanoparticles/zeolite nanocomposites have antibacterial efficiency approximating to 100% for removal of E. coli hence can be used for water disinfection. Zeolite/Iron (IV) oxide composite exhibit higher efficiency for Pb (97.2%) compared to As (96.8%) due to large surface area, more active sites and high porosity. Zeolite/Zinc oxide releases Zn2+ ions that damage the outer cell membrane and penetrate the intracellular content for E. coli hence causing osmotic imbalance leading to bacterial death. For effective removal of heavy metals from water using zeolite composites, the accompanying factors are; pH of 2–6, initial concentrations of metal ions not exceeding 100 mg/L, contact time varying between 0.5–24 h and temperature can be varied with an increment of 5°C from 10°C. Zeolite composites mixed with titanium dioxide, zinc oxide and polypropylene have good adsorption capacities. These however are limited by poor reusability and production of huge toxic waste. Silver nanoparticles/zeolite nanocomposite are better and sustainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. S. Dos Santos et al., Sci. Total Environ. 607–608, 497–508 (2017).

    Article  CAS  Google Scholar 

  2. K. Chon and J. Cho, Chem. Eng. J. 295, 268–277 (2016).

    Article  CAS  Google Scholar 

  3. V. Singh, C. Ram, and A. Kumar, J. Civ. Environ. Eng. 6 (4), 1 (2016).

    Google Scholar 

  4. S. C. Smith and D. F. Rodrigues, Carbon (N.Y.) 91, 122–143 (2015).

    Article  CAS  Google Scholar 

  5. K. Zhou, B. Wu, X. Dai, and X. Chai, Chem. Eng. J. 347, 819–827 (2018).

    Article  CAS  Google Scholar 

  6. S. Natarajan, H. C. Bajaj, and R. J. Tayade, J. Environ. Sci., 1-22 (2017).

  7. H. Behnam, S. Saeedfar, and F. Sabbagh, “Biological contamination of the water and its effects,” in Proceedings of the Technology, Education, and Science International Conference TESIC, 2013, no. 1999, Table 1.

  8. I. G. Canu, O. Laurent, N. Pires, et al., Environ. Health Perspect. 119, 1676–1680 (2011).

    Article  CAS  Google Scholar 

  9. S. Bhattacharya, I. Saha, A. Mukhopadhyay, et al., Int. J. Chem. Sci. Technol. 3 (3), 59–64 (2013).

    Google Scholar 

  10. I. M. Adesiyan, O. Titilayo, and A. I. Okoh, J. Heal. Pollut. 8 (19), 1–14 (2018).

    Article  CAS  Google Scholar 

  11. H. Price, E. Adams, and R. S. Quilliam, Sci. Total Environ. 671, 818–826 (2019).

    Article  CAS  Google Scholar 

  12. N. H. Perlroth and C. W. Castelo Branco, J. Pediatr. (Rio. J.) 93, 17–27 (2017).

    Article  Google Scholar 

  13. R. Bain et al., Trop. Med. Int. Health 19, 917–927 (2014).

    Article  Google Scholar 

  14. G. Kam, C. Ding, and T. Sydney, Wastewater Treatment and Reuse: The Future Source of Water Supply 4 (Elsevier, Amsterdam, 2017).

    Google Scholar 

  15. X. Qu and P. J. J. Alvarez, Water Res. 47, 3931–3946 (2013).

    Article  CAS  Google Scholar 

  16. T. C. Prathna, S. K. Sharma, and M. Kennedy, Sep. Purif. Technol. 199, 260–270 (2018).

    Article  CAS  Google Scholar 

  17. P. Z. Ray and H. J. Shipley, RSC Adv. 5, 29885–29907 (2015).

  18. Y. Zhang et al., NanoImpact, Nos. 3–4, 22–39 (2016).

    Article  Google Scholar 

  19. M. N. Chong, Z. Y. Tneu, P. E. Poh, et al., J. Taiwan Inst. Chem. Eng. 50, 288–296 (2015).

    Article  CAS  Google Scholar 

  20. M. Moshoeshoe, M. S. Nadiye-tabbiruka, and V. Obu-seng, Am. J. Mater. Sci. 7, 196–221 (2017).

    Google Scholar 

  21. C. J. Rhodes, “The properties and applications of zeolites,” Sci. Prog. 93, 223 (2010).

    Article  CAS  Google Scholar 

  22. J. Yang et al., “Nanomaterials for the removal of heavy metals from wastewater,” Nanomaterials 9 (3) (2019).

  23. Z. Tauanov, D. Shah, and V. Inglezakis, “Silver nanoparticles impregnated zeolites derived from coal fly ash: Effect of the silver loading on adsorption of mercury (II),” in Proceedings of the 3rd EWaS International Conference on Insights on the Water-Energy-Food Nexus, Lefkada Island, Greece, June 27–30, 2018, Proceedings 2, 647 (2018).

    Article  Google Scholar 

  24. N. Pandey, S. K. Shukla, N. B. Singh, et al., Nanocomposites 0324, 47–66 (2017).

    Article  CAS  Google Scholar 

  25. A. Y. Hoekstra, M. M. Mekonnen, A. K. Chapagain, et al., “Global monthly water scarcity: Blue water footprints versus blue water availability,” PLoS One 7, e32688 (2012).

    Article  CAS  Google Scholar 

  26. T. Oki and R. E. Quiocho, Int. J. Water Resour. Dev. 36, 416–428 (2020).

    Article  Google Scholar 

  27. G. K. Bakyayita, A. C. Norrström, and R. N. Kulabako, J. Environ. Publ. Health 2019, 1–18 (2019).

    Article  CAS  Google Scholar 

  28. C. V. Mohod and J. Dhote, Int. J. Innov. Res. Sci. Eng. Technol. 2, 2992–2996 (2013).

    Google Scholar 

  29. M. Haseena, M. F. Malik, A. Javed, et al., Environ. Risk Assessm. Remed. 1 (3), 16–19 (2017).

    Google Scholar 

  30. M. L. Kapembo et al., “Evaluation of water quality from suburban shallow wells under tropical conditions according to the seasonal variation, Bumbu, Kinshasa, Democratic Republic of the Congo,” Expo. Health 8, 487–496 (2016).

    Article  CAS  Google Scholar 

  31. Z. Chen et al., “Le programme de la Carte Mondiale des Aquifères Karstiques: Concept, procédure de cartographie et carte de l’Europe,” Hydrogeol. J. 25, 771–785 (2017).

    Article  Google Scholar 

  32. M. Li et al., Water (Switzerland) 11 (10), 1–16 (2019).

    Google Scholar 

  33. D. Chalchisa, M. Megersa, and A. Beyene, Environ. Syst. Res. 6 (1) (2018).

  34. P. Li and H. Qian, Int. J. Water Resour. Dev. 34, 327–336 (2018).

    Article  Google Scholar 

  35. A. Y. Hoekstra, A. K. Chapagain, and P. R. van Oel, Water (Switzerland) 9, (6) (2017).

  36. I. Chirisa, E. Bandauko, A. Matamanda, and G. Mandisvika, Appl. Water Sci. 7, 1069–1078 (2017).

    Article  Google Scholar 

  37. L. Godfrey et al., Reg. Dev. Africa Working Title, 1–14 (2019).

  38. N. Rahmanian et al., J. Chem. 2015 (Cd), 1–10 (2015).

  39. S. A. Khan, Z. U. Din, and A. Zubair, Int. J. Sci. Nat. 2, 648–652 (2011).

    CAS  Google Scholar 

  40. R. A. Fallahzadeh, M. T. Ghaneian, M. Miri, and M. M. Dashti, Environ. Sci. Pollut. Res. 24, 24790–24802 (2017).

    Article  CAS  Google Scholar 

  41. WHO, Guidelines for Drinking Water Quality (WHO, 2017).

    Google Scholar 

  42. D. I. Walker et al., Water Res. 126, 101–110 (2017).

    Article  CAS  Google Scholar 

  43. J. Jang, H. G. Hur, M. J. Sadowsky, et al., J. Appl. Microbiol. 123, 570–581 (2017).

    Article  CAS  Google Scholar 

  44. A. L. Flores-Mireles, J. N. Walker, M. Caparon, and S. J. Hultgren, Microbiol. Mol. Biol. 13, 269–284 (2015).

    CAS  Google Scholar 

  45. S. D. G. Rayasam, I. Ray, K. R. Smith, and L. W. Riley, Am. Soc. Trop. Med. Hyg. 100, 1101–1104 (2019).

    Article  CAS  Google Scholar 

  46. L. Di Sante, A. Pugnaloni, F. Biavasco, et al., Microbiol. Res. 210, 43–50 (2018).

    Article  CAS  Google Scholar 

  47. T. Y. Yu, C. J. M. Chin, and Y. J. Chang, Environ. Sci. Pollut. Res. 26, 33936–33945 (2019).

    Article  CAS  Google Scholar 

  48. K. Underthun, J. De, A. Gutierrez, R. Silverberg, and K. R. Schneider, J. Food Protect. 81, 150–157 (2018).

    Article  Google Scholar 

  49. E. M. M. E. M. Ibrahim, M. A. El-Liethy, A. L. K. Abia, et al., Sci. Total Environ. 648, 1297–1304 (2019).

    Article  CAS  Google Scholar 

  50. N. Dusek, A. J. Hewitt, K. N. Schmidt, and P. W. Bergholz, Appl. Environ. Microbiol. 84 (10), 1–19 (2018).

    Article  Google Scholar 

  51. A. Korajkic, W. Pauline, B. Lauren, et al., Microbiol. Mol. Biol. 83 (4), 1–26 (2019).

    Article  Google Scholar 

  52. T. Ding et al., J. Microbiol. Biotechnol. 27, 417–428 (2017).

    Article  CAS  Google Scholar 

  53. S. Wang and Y. Peng, Chem. Eng. J. 156, 11–24 (2010).

    Article  CAS  Google Scholar 

  54. A. U. Rahman, F. U. Khan, W. U. Rehman, and S. Saleem, J. Chem. Technol. Metall. 53, 825–829 (2018).

    Google Scholar 

  55. S. K. Masoudian, S. Sadighi, and A. Abbasi, Bull. Chem. React. Eng. Catal. 8, 54–60 (2013).

    Article  CAS  Google Scholar 

  56. P. Gautam, D. Madathil, and A. N. B. Nair, Int. J. ChemTech Res. 5, 2303–2308 (2013).

    Google Scholar 

  57. A. A. Alswata et al., Res. Phys. 7, 723–731 (2017).

    Google Scholar 

  58. M. Mxolisi, T. Alfred, M. Msagati, and J. M. Thwala, Desalin. Water Treatm. 53 (10), 1–9 (2013).

    Google Scholar 

  59. K. Shameli, M. Bin Ahmad, M. Zargar, et al., Int. J. Nanomed. 2011, 331–341 (2011).

    Article  CAS  Google Scholar 

  60. M. Balintova and S. Demcak, J. Civ. Eng. Environ. Archit. 63, 113–122 (2016).

    Google Scholar 

  61. P. M. Visakh, Nanomaterials and Nanocomposites; Zero to Three Dimensional materials and their Composites, I (Wiley-VCH, Weinheim, 2016).

    Google Scholar 

  62. E. Ahmadi et al., Desalin. Water Treatm. 57, 1178174 (2016).

    Google Scholar 

  63. M. Reza, M. Fazli, and M. Hossein, Appl. Catal., B 183, 407–416 (2016).

    Article  CAS  Google Scholar 

  64. H. D. Beyene and T. G. Ambaye, Sustain. Polym. Compos. Nanocompos., 387–412 (2019).

  65. M. Ge et al., Nanotechnol. Rev., No. 2191-9097, 1–39 (2016).

  66. K. Nakamoto, M. Ohshiro, and T. Kobayashi, J. Environ. Chem. Eng. 5, 513–525 (2017).

    Article  CAS  Google Scholar 

  67. L. D. Mafu, B. B. Mamba, and T. A. M. Msagati, J. Saudi Chem. Soc. 20, 594–605 (2016).

    CAS  Google Scholar 

  68. M. Rai and R. Shegokar, “Metal nanoparticles in pharma,” in Metal Nanoparticles in Pharma (Springer Int., Porto Alegre, 2017), pp. 1–493.

    Google Scholar 

  69. L. Wang, C. Hu, and L. Shao, Int. J. Nanomed. 12, 1227–1249 (2017).

    Article  CAS  Google Scholar 

  70. B. Dong et al., R. Soc. Chem., 1–6 (2014).

  71. N. Q. Hien, N. Thuy, A. Trinh, et al., Vietnam J. Sci. Technol. 53, 348–354 (2015).

    Google Scholar 

  72. G. van Erven and W. Acchar, Mater. Today Proc. 2, 321–330 (2015).

    Article  Google Scholar 

  73. T. Dankovich, M. R. de Moura, L. H. C. Mattoso, and V. Zucolotto, J. Food Eng. 109, 1992–1998 (2012).

    Google Scholar 

  74. E. Asuncion, S. Dimapilis, C. Hsu, et al., Sustain. Environ. Res. 2017, 1–10 (2017).

    Google Scholar 

  75. C. B. Ong, L. Y. Ng, and A. W. Mohammad, Renew. Sustain. Energy Rev. 81, 536–551 (2018).

    Article  CAS  Google Scholar 

  76. P. N. Dave and L. V Chopda, J. Nanotechnol. 2014, 398569 (2014).

    Article  CAS  Google Scholar 

  77. L. Feng, M. Cao, X. Ma, et al., J. Hazard. Mater. 217–218, 439–446 (2012).

    Article  CAS  Google Scholar 

  78. C. Santhosh, A. Malathi, D. Ehsan, et al., “Iron oxide nanomaterials for water purification,” in Nanoscale Materials in Water Purification (Elsevier, Amsterdam, 2019), Vol. 16, pp. 431–446

    Google Scholar 

  79. Y. Li et al., Molecules 23, 606-1–12 (2018).

  80. A. M. Youssef and F. M. Malhat, Macromol. Symp. 337, 96–101 (2014).

    Article  CAS  Google Scholar 

  81. C. C. H. Lien, J. Nanopart. Res. (2014).

  82. E. Vetrimurugan, K. Brindha, and L. Elango, “Human exposure risk assessment due to heavy metals in groundwater by pollution index and multivariate statistical methods: A case study from South Africa,” Water 9, 234 (2017).

    Article  CAS  Google Scholar 

  83. A. You, M. A. Y. Be, and I. In, “Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method,” AIP Conf. Proc. 1911, 020021 (2017).

    Google Scholar 

  84. M. Lazar, S. Varghese, and S. Nair, Catalysts 2, 572–601 (2012).

    Article  CAS  Google Scholar 

  85. Z. Liu et al., Chem. Eng. J. 235, 257–263 (2014).

    Article  CAS  Google Scholar 

  86. M. Mxolisi, T. Alfred, M. Msagati, and J. M. Thwala, Desalin. Water Treatm. 53 (10), 1–9 (2013).

    Google Scholar 

  87. N. M. Mubarak, J. N. Sahu, E. C. Abdullah, et al., Sep. Purif. Rev. 43 (4), 37–41 (2014).

    Article  CAS  Google Scholar 

  88. G. N. Hlongwane, P. T. Sekoai, M. Meyyappan, and K. Moothi, Sci. Total Environ. 656, 808–833 (2018).

    Article  CAS  Google Scholar 

  89. R. Svinka, V. Svinka, I. Pudze, and M. Damberga, Sci. J. RTU Mater. Sci. Appl. Chem. 32, 39–44 (2015).

    CAS  Google Scholar 

  90. M. Padervand and M. R. Gholami, Environ. Sci. Pollut. Res. 20, 3900–3909 (2013).

    Article  CAS  Google Scholar 

  91. A. A. Alswat, M. Bin Ahmad, and T. A. Saleh, J. Water Supply Res. Technol. 65, 465–479 (2016).

    Article  Google Scholar 

  92. M. Esaifan et al., Minerals 9 (484), 1–13 (2019).

    Article  CAS  Google Scholar 

  93. N. M. Mahmoodi and M. H. Saffar-Dastgerdi, Microchem. J. 145, 74–83 (2019).

    Article  CAS  Google Scholar 

  94. M. T. Amin, A. A. Alazba, and U. Manzoor, Adv. Mater. Sci. Eng. 2014, 825910-1–24 (2014).

    Article  CAS  Google Scholar 

  95. N. Ahmad et al., “Decorated graphene oxide for antibacterial activity enhancement,” Particuology 49 (2019).

  96. S. Aishah, M. Hanim, N. Ahmad, et al., Appl. Surf. Sci. 360, 121–130 (2016).

    Article  CAS  Google Scholar 

  97. Y. Inoue and H. Hamashima, J. Biomater. Nanobiotechnol. 2012, 114–117 (2012).

    Article  CAS  Google Scholar 

  98. J. Lei, G. Yao, and Z. Sun, J. Mater. Sci. 54, 11682–11693 (2019).

    Article  CAS  Google Scholar 

  99. L. Zhu, J. Dai, L. Chen, et al., J. Mater. Sci. 52, 2473–2483 (2017).

    Article  CAS  Google Scholar 

  100. J. A. Lemire, J. J. Harrison, and R. J. Turner, Nat. Rev. Microbiol. 11, 371–384 (2013).

    Article  CAS  Google Scholar 

  101. M. Padervand, M. Reza, and R. Vatan, Mater. Sci. Semicond. Process. 15, 73–79 (2012).

    Article  CAS  Google Scholar 

  102. N. Ayawei, A. N. Ebelegi, and D. Wankasi, J. Chem. 2017, 3039817-1–11 (2017).

  103. J. K. Ahmed and M. Ahmaruzzaman, J. Water Process Eng. 10, 39–47 (2016).

    Article  Google Scholar 

  104. M. Jian, B. Liu, G. Zhang, et al., Colloids Surf., A 465, 67–76 (2015).

    Article  CAS  Google Scholar 

  105. N. H. Mthombeni, S. Mbakop, A. Ochieng, and M. S. Onyango, J. Taiwan Inst. Chem. Eng. 66, 172–180 (2016).

    CAS  Google Scholar 

  106. E. Nazarzadeh, A. Motahari, and M. Sillanpää, Environ. Res. 162, 173–195 (2018).

    Article  CAS  Google Scholar 

  107. T. S. Mthombo, A. K. Mishra, S. B. Mishra, and B. B. Mamba, J. Appl. Polym. Sci. 121, 3414–3424 (2011).

    Article  CAS  Google Scholar 

  108. M. Zendehdel, B. Shoshtari, and Y. Giuseppe, J. Iran. Chem. Soc. 13, 1915–1930 (2016).

    Article  CAS  Google Scholar 

  109. M. Sha, A. Dashti, and H. Tayebi, “Removal of Hg(II) from aqueous solution using polypyrrole/SBA-15 nanocomposite: Experimental and modeling,” Synth. Met. 212, 154–160 (2016).

    Article  CAS  Google Scholar 

  110. M. Deravanesiyan, M. Beheshti, and A. Malekpour, J. Mol. Liq. 209, 246–257 (2015).

    Article  CAS  Google Scholar 

  111. T. S. Muhammad et al., Pure Appl. Biol. 9, 96–104 (2020).

    Google Scholar 

  112. Ihsanullah et al., Sep. Purif. Technol. 157, 141–161 (2016).

    Article  CAS  Google Scholar 

  113. S. J. Cobbina, A. B. Duwiejuah, R. Quansah, et al., Int. J. Environ. Res. Public Health 12, 10620–10634 (2015).

    Article  CAS  Google Scholar 

  114. C. E. Chubaka, H. Whiley, J. W. Edwards, and K. E. Ross, Int. J. Environ. Res. Public Health, 1–12 (2018).

  115. M. Jamshaid, A. A. Khan, K. Ahmed, and M. Saleem, Int. J. Biosci. 6655, 223–240 (2018).

    Google Scholar 

  116. G. Sandeep, A. Sangita, S. S. Kumar, and G. Rakhi, “Biological effect of heavy metal in drinking water samples of Western Uttar Pradesh region in India,” J. Appl. Pharm. Sci. 02, 177–181 (2012).

    Article  Google Scholar 

  117. M. S. Sankhla, M. Kumari, and M. Nandan, Int. J. Curr. Microbiol. Appl. Sci. 5, 759–766 (2016).

    Article  CAS  Google Scholar 

  118. A. Alinejad, S. F. Farsani, Z. Bahmani, et al., “Evaluation of heavy metals level (arsenic, nickel, mercury and lead) effecting on health in drinking water resource of Kohgiluyeh county using geographic information system (GIS) Msc of water and wastewater, Environmental Engineering Kurdistan Rura,” Int. J. Med. Res. Heal. Sci., 233–241 (2016).

  119. S. Dubey, S. Banerjee, S. N. Upadhyay, and Y. C. Sharma, J. Mol. Liq. 240, 656–677 (2017).

    Article  CAS  Google Scholar 

  120. K. Shekhawat, S. Chatterjee, and B. Joshi, Int. J. Adv. Res. 3, 167–172 (2016).

    Google Scholar 

  121. T. Akter, F. T. Jhohura, F. Akter, et al., J. Heal. Popul. Nutr., 1–12 (2016).

  122. A. Ojha, Nanomaterials for Removal of Waterborne Pathogens: Opportunities and Challenges (Elsevier, Amsterdam, 2020).

    Book  Google Scholar 

  123. A. Thi, S. Pung, S. Sreekantan, and A. Matsuda, Heliyon 5, e01440 (2019).

    Article  Google Scholar 

  124. J. Jiang, G. Li, Q. Ding, and K. Mai, “Ultraviolet resistance and antimicrobial properties of ZnO-supported zeolite filled isotactic polypropylene composites,” Polym. Degrad. Stab. 97, 833–838 (2012).

    Article  CAS  Google Scholar 

  125. A. Nagy, A. Harrison, and P. K. Dutta, Int. J. Nanomed. 6, 1833–1852 (2011).

    CAS  Google Scholar 

  126. W. A. Khanday, F. Marrakchi, M. Asif, and B. H. Hameed, J. Taiwan Inst. Chem. Eng. 0, 1–10 (2016).

    Google Scholar 

  127. E. Elkhatib, M. Moharem, and H. Hamadeen, Desalin. Water Treatm. 144, 79–88 (2019).

    CAS  Google Scholar 

  128. N. Bordoloi, R. Goswami, M. Kumar, and R. Kataki, “Bioresource technology biosorption of Co(II) from aqueous solution using algal biochar: Kinetics and isotherm studies,” Bioresour. Technol., 1–5 (2017).

  129. J. Liu and X. Wang, Sci. World J. 2013, 897159-1–7 (2013).

    Google Scholar 

  130. M. Irandoost, M. Pezeshki-Modaress, and V. Javanbakht, J. Water Process Eng. 32, 100981 (2019).

    Article  Google Scholar 

  131. M. Zendehdel, M. Ramezani, B. Shoshtari-Yeganeh, et al., Environ. Technol. 40, 3689–3704 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the World Bank under the African Center of Excellence in Materials, Product development and Nano-Technology, MAPRONANO, Uganda.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. M. Wangi, P. W. Olupot, J. K. Byaruhanga or R. N. Kulabako.

Ethics declarations

The authors have no conflict of interest and all the information and knowledge sources in this review have been fully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wangi, G.M., Olupot, P.W., Byaruhanga, J.K. et al. A Review for Potential Applications of Zeolite-Based Nanocomposites in Removal of Heavy Metals and Escherichia coli from Drinking Water. Nanotechnol Russia 15, 686–700 (2020). https://doi.org/10.1134/S1995078020060221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020060221

Navigation