Skip to main content
Log in

A software package for computer-aided design of spintronic nanodevices

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Spintronics is a new trend in the development of nanoelectronics and, therefore, requires the development of new software tools for modeling aimed at the development and further miniaturization of spintronic devices. In this paper, we present a new software package for the technology computer aided design modeling of spintronic devices based on magnetic tunnel junctions. The theoretical models and scenarios of the software package are described. Examples of application of the software package to solving the main problems arising in the design of magnetoresistive memory elements and consistent miniaturization of these devices are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Baibich, J. M. Broto, A. Fert, et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  Google Scholar 

  2. J. S. Moodera, L. R. Kinder, T. M. Wong, et al., “Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions,” Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  Google Scholar 

  3. J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, et al., “Disk recording beyond 100 Gb/in.2: Hybrid recording?,” J. Appl. Phys. 87, 5398–5403 (2000).

    Article  Google Scholar 

  4. J. Åkerman, “Toward a universal memory,” Science 308, 508–510 (2005).

    Article  Google Scholar 

  5. A. F. Popkov, K. A. Zvezdin, M. Yu. Chinenkov, et al., “Spin transport and problems of magnetic random access memory (MRAM),” Inzh. Fiz., No. 9, 19–34 (2012).

    Google Scholar 

  6. Y. Chen, H. H. Li, X. Wang, et al., “A 130 nm 1.2/3.3 V 16 kb spin-transfer torque random access memory with nondestructive self-reference sensing scheme,” IEEE J. Solid-State Circuits 47, 560–573 (2012).

    Article  Google Scholar 

  7. B. Dieny, R. Sousa, S. Bandiera, et al., “Extended scalability and functionalities of MRAM based on thermally assisted writing,” in Proceedings of the Electron Devices Meeting IEDM (IEEE Int., 2011), pp. 1.3.1–1.3.4.

    Google Scholar 

  8. www.synopsys.com. Accessed September 29, 2016.

  9. www.silvaco.com. Accessed September 29, 2016.

  10. www.cogenda.com. Accessed September 29, 2016.

  11. www.magoasis.com. Accessed September 29, 2016.

  12. www.goparallel.net. Accessed September 29, 2016.

  13. S. S. P. Parkin, C. Kaiser, A. Panchula, et al., “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers,” Nat. Mater. 3, 862–867 (2004).

    Article  Google Scholar 

  14. Y. Huai, “Spin-transfer torque MRAM (STT-MRAM): challenges and prospects,” AAPPS Bull. 18, 33–40 (2008).

    Google Scholar 

  15. M. Miron, K. Garello, G. Gaudin, et al., “Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection,” Nature 476, 189–193 (2011).

    Article  Google Scholar 

  16. Y.-W. Yin, M. Raju, W.-J. Hu, et al., “Multiferroic tunnel junctions,” Front. Phys. 7, 380–385 (2012).

    Article  Google Scholar 

  17. T. Mauyama, Y. Shiota, T. Nozaki, et al., “Large voltage- induced magnetic anisotropy change in a few atomic layers of iron,” Nat. Nanotechnol. 4, 158–161 (2009).

    Article  Google Scholar 

  18. J. Åkerman, M. DeHerrera, M. Durlam, et al., in Magnetic Tunnel Junction Based Magnetoresistive Random Access Memory, Ed. by M. Johnson (Elsevier Academic, Amsterdam, 2004).

  19. J. Deak, “Thermal magnetic random access memory,” in Proceedings of the IEEE International Conference on Computer Design New Memory Technologies, San Jose, CA, Oct. 4, 2005.

  20. B. Purnama, Y. Nozaki, and K. Matsuyama, “Micromagnetic simulation of thermally assisted magnetization reversal in magnetic nanodots with perpendicular anisotropy,” J. Magn. Magn. Mater. 310, 2683–2685 (2007).

    Article  Google Scholar 

  21. D. Pinna, A. Mitra, D. L. Stein, et al., “Thermally assisted spin-transfer torque magnetization reversal in uniaxial nanomagnets,” Appl. Phys. Lett. 101, 262401 (2012).

    Article  Google Scholar 

  22. W. H. Butler, T. Mewes, C. K. A. Mewes, et al., “Switching distributions for perpendicular spin-torque devices within the macrospin approximation,” IEEE Trans. Magn. 48, 4684–4700 (2012).

    Article  Google Scholar 

  23. I. L. Prejbeanu, S. Bandiera, J. Alvarez-Herault, et al., “Thermally assisted MRAMs: ultimate scalability and logic functionalities,” J. Phys. D: Appl. Phys. 46, 074002 (2013).

    Article  Google Scholar 

  24. D. A. Garanin, “Fokker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets,” Phys. Rev. B 55, 3050 (1997).

    Article  Google Scholar 

  25. J. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater. 159, L1 (1996).

    Article  Google Scholar 

  26. http://www.bitsavers.org/pdf/calma/GDS_II_Users_Operating_Manual_Nov78.pdf. Accessed November 30, 2016.

  27. https://sourceforge.net/projects/netgen-mesher. Accessed September 29, 2016.

  28. https://gitlab.asc.tuwien.ac.at/jschoeberl/ngsolve-docu/wikis/home. Accessed September 29, 2016.

  29. http://www.vtk.org. Accessed September 29, 2016.

  30. http://dakota.sandia.gov. Accessed November 30, 2016.

  31. J. J. Nowak, R. P. Robertazzi, J. Z. Sun, et al., “Dependence of voltage and size on write error rates in spintransfer torque magnetic random-access memory,” IEEE Magn. Lett. 7, 3102604 (2016).

    Article  Google Scholar 

  32. E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. R. Soc. London, Ser. A 240, 599–642 (1948).

    Article  Google Scholar 

  33. P. F. Bessarab, V. M. Uzdin, and H. Jonsson, “Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation,” Comput. Phys. Commun. 196, 335–347 (2015).

    Article  Google Scholar 

  34. I. L. Prejbeanu, S. Bandiera, J. Alvarez-Herault, et al., “Thermally assisted MRAMs: ultimate scalability and logic functionalities,” J. Phys. D: Appl. Phys. 46, 074002 (2013).

    Article  Google Scholar 

  35. L. M. Loong, X. Qiu, Zh. P. Neo, et al., “Strainenhanced tunneling magnetoresistance in MgO magnetic tunnel junctions,” Sci. Rep. 4, 6505 (2014).

    Article  Google Scholar 

  36. I. M. Iskandarova, A. A. Knizhnik, A. F. Popkov, et al., “Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers,” J. Appl. Phys. 120, 123903 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Knizhnik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knizhnik, A.A., Goryachev, I.A., Demin, G.D. et al. A software package for computer-aided design of spintronic nanodevices. Nanotechnol Russia 12, 208–217 (2017). https://doi.org/10.1134/S1995078017020082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017020082

Navigation