Skip to main content
Log in

Ubiquitin-Proteasome System in the Regulation of Cell Pluripotency and Differentiation

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) demonstrate unique abilities for continuous self-renewal and differentiation into all types of somatic cells. Understanding the mechanisms controlling these properties will facilitate an effective and safe introduction of ESCs and iPSCs into cell therapy. Recent data have underscored the importance of proteostasis in the maintenance of ESC function. The present review focuses on the role of ubiquitin-proteasome system (UPS), a key member of proteostasis network, in the regulation of pluripotency and differentiation of ESCs and iPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abu-Dawud, R., Graffmann, N., Ferber, S., Wruck, W., and Adjaye, J., Pluripotent stem cells: induction and self-renewal, Philos. Trans. R. Soc. London, B, 2018, vol. 373, p. 20170213. https://doi.org/10.1098/rstb.2017.0213

  2. Al Mamun, M.M., Khan, M.R., Zhu, Y., Zhang, Y., Zhou, S., Xu, R., Bukhari, I., Thorne, R.F., Li, J., and Zhang, X.D., Stub1 maintains proteostasis of master transcription factors in embryonic stem cells, Cell Rep., 2022, vol. 39, p. 110919. https://doi.org/10.1016/j.celrep.2022.110919

    Article  CAS  Google Scholar 

  3. Alekseenko, Z., Dias, J.M., Adler, A.F., Kozhevniko-va, M., van Lunteren, J.A., Nolbrant, S., Jeggari, A., Vasylovska, S., Yoshitake, T., and Kehr, J., Robust derivation of transplantable dopamine neurons from human pluripotent stem cells by timed retinoic acid delivery, Nat. Commun., 2022, vol. 13, p. 1. https://doi.org/10.1038/s41467-022-30777-8

    Article  CAS  Google Scholar 

  4. Babaie, Y., Herwig, R., Greber, B., Brink, T.C., Wruck, W., Groth, D., Lehrach, H., Burdon, T., and Adjaye, J., Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells, Stem Cells, 2007, vol. 25, p. 500. https://doi.org/10.1634/stemcells.2006-0426

    Article  CAS  PubMed  Google Scholar 

  5. Baharvand, H., Hajheidari, M., Ashtiani, S.K., and Salekdeh, G.H., Proteomic signature of human embryonic stem cells, Proteomics, 2006, vol. 6, p. 3544. https://doi.org/10.1002/pmic.200500844

    Article  CAS  PubMed  Google Scholar 

  6. Bai, M., Zhao, X., Sahara, K., Ohte, Y., Hirano, Y., Kaneko, T., Yashiroda, H., and Murata, S., Assembly mechanisms of specialized core particles of the proteasome, Biomolecules, 2014, vol. 4, p. 662. https://doi.org/10.3390/biom4030662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beckwith, R., Estrin, E., Worden, E.J., and Martin, A., Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase, Nat. Struct. Mol. Biol., 2013, vol. 20, p. 1164. https://doi.org/10.1038/nsmb.2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Behbahan, I.S., Duan, Y., Lam, A., Khoobyari, S., Ma, X., Ahuja, T.P., and Zern, M.A., New approaches in the differentiation of human embryonic stem cells and induced pluripotent stem cells toward hepatocytes, Stem Cell Rev. Rep., 2011, vol. 7, p. 748. https://doi.org/10.1007/s12015-010-9216-4

    Article  PubMed  Google Scholar 

  9. Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., and Plath, K., A bivalent chromatin structure marks key developmental genes in embryonic stem cells, Cell, 2006, vol. 125, p. 315. https://doi.org/10.1016/j.cell.2006.02.041

    Article  CAS  PubMed  Google Scholar 

  10. Biancotti, J.C., Narwani, K., Buehler, N., Mandefro, B., Golan-Lev, T., Yanuka, O., Clark, A., Hill, D., Benvenisty, N., and Lavon, N., Human embryonic stem cells as models for aneuploid chromosomal syndromes, Stem Cells, 2010, vol. 28, p. 1530. https://doi.org/10.1002/stem.483

    Article  CAS  PubMed  Google Scholar 

  11. Blondelle, J., Shapiro, P., Domenighetti, A.A., and Lange, S., Cullin E3 ligase activity is required for myoblast differentiation, J. Mol. Biol., 2017, vol. 429, p. 1045. https://doi.org/10.1016/j.jmb.2017.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buckley, S.M., Aranda-Orgilles, B., Strikoudis, A., Apostolou, E., Loizou, E., Moran-Crusio, K., Farnsworth, C.L., Koller, A.A., Dasgupta, R., Silva, J.C., Stadtfeld, M., Hochedlinger, K., Chen, E.I., and Aifantis, I., Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system, Cell Stem Cell, 2012, vol. 11, p. 783. https://doi.org/10.1016/j.stem.2012.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Budenholzer, L., Cheng, C.L., Li, Y., and Hochstrasser, M., Proteasome structure and assembly, J. Mol. Biol., 2017, vol. 429, p. 3500. https://doi.org/10.1016/j.jmb.2017.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bustos, F., Segarra-Fas, A., Chaugule, V.K., Brandenburg, L., Branigan, E., Toth, R., Macartney, T., Knebel, A., Hay, R.T., and Walden, H., RNF12 X-linked intellectual disability mutations disrupt E3 ligase activity and neural differentiation, Cell Rep., 2018, vol. 23, p. 1599. https://doi.org/10.1016/j.celrep.2018.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao, F., Lin, S., Xie, X., Ray, P., Patel, M., Zhang, X., Drukker, M., Dylla, S.J., Connolly, A.J., and Chen, X., In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery, Circulation, 2006, vol. 113, p. 1005. https://doi.org/10.1161/CIRCULATIONAHA.105.588954

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cascio, P., Hilton, C., Kisselev, A.F., Rock, K.L., and Goldberg, A.L., 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide, EMBO J., 2001, vol. 20, p. 2357. https://doi.org/10.1093/emboj/20.10.2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi, J. and Baek, K.H., Cellular functions of stem cell factors mediated by the ubiquitin-proteasome system, Cell. Mol. Life Sci., 2018, vol. 75, p. 1947. https://doi.org/10.1007/s00018-018-2770-7

    Article  CAS  PubMed  Google Scholar 

  18. Ciechanover, A. and Kwon, Y.T., Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies, Exp. Mol. Med., 2015, vol. 47, p. e147. https://doi.org/10.1038/emm.2014.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cui, Z., Hwang, S.M., and Gomes, A.V., Identification of the immunoproteasome as a novel regulator of skeletal muscle differentiation, Mol. Cell. Biol., 2014, vol. 34, p. 96. https://doi.org/10.1128/MCB.00622-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dahlmann, B., Proteasomes, Essays Biochem., 2005, vol. 41, p. 31. https://doi.org/10.1042/EB0410031

    Article  CAS  PubMed  Google Scholar 

  21. de Napoles, M., Mermoud, J.E., Wakao, R., Tang, Y.A., Endoh, M., Appanah, R., Nesterova, T.B., Silva, J., Otte, A.P., and Vidal, M., Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation, Dev. Cell, 2004, vol. 7, p. 663. https://doi.org/10.1016/j.devcel.2004.10.005

    Article  CAS  PubMed  Google Scholar 

  22. Diefenbacher, M.E., Chakraborty, A., Blake, S.M., Mitter, R., Popov, N., Eilers, M., and Behrens, A., Usp28 counteracts Fbw7 in intestinal homeostasis and cancer, Cancer Res., 2015, vol. 75, p. 1181. https://doi.org/10.1158/0008-5472.CAN-14-1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dieudonne, F.-X., Sévère, N., Biosse-Duplan, M., Weng, J.-J., Su, Y., and Marie, P.J., Promotion of osteoblast differentiation in mesenchymal cells through Cbl-mediated control of STAT5 activity, Stem Cells, 2013, vol. 31, p. 1340. https://doi.org/10.1002/stem.1380

    Article  CAS  PubMed  Google Scholar 

  24. Drews, O. and Taegtmeyer, H., Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies, Antioxid. Redox. Signal., 2014, vol. 21, p. 2322. https://doi.org/10.1089/ars.2013.5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Du, Z., He, F., Yu, Z., Bowerman, B., and Bao, Z., E3 ubiquitin ligases promote progression of differentiation during C. elegans embryogenesis, Dev. Biol., 2015, vol. 398, p. 267. https://doi.org/10.1016/j.ydbio.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  26. Dutta, D., Sharma, V., Mutsuddi, M., and Mukherjee, A., Regulation of Notch signaling by E3 ubiquitin ligases, FEBS J., 2021, vol. 289, p. 937. https://doi.org/10.1111/febs.15792

    Article  CAS  PubMed  Google Scholar 

  27. Endoh, M., Endo, T.A., Endoh, T., Fujimura, Y.-I., Ohara, O., Toyoda, T., Otte, A.P., Okano, M., Brockdorff, N., and Vidal, M., Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity, Development, 2008, vol. 135, p. 1513. https://doi.org/10.1242/dev.014340

    Article  CAS  PubMed  Google Scholar 

  28. Fabre, B., Lambour, T., Garrigues, L., Amalric, F., Vigneron, N., Menneteau, T., Stella, A., Monsarrat, B., Van den Eynde, B., and Burlet-Schiltz, O., Deciphering preferential interactions within supramolecular protein complexes: the proteasome case, Mol. Syst. Biol., 2015, vol. 11, p. 771. https://doi.org/10.15252/msb.20145497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fang, L., Zhang, L., Wei, W., Jin, X., Wang, P., Tong, Y., Li, J., Du, J.X., and Wong, J., A methylation-phosphorylation switch determines Sox2 stability and function in ESC maintenance or differentiation, Mol. Cell, 2014, vol. 55, p. 537. https://doi.org/10.1016/j.molcel.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  30. Finley, D., Tanaka, K., Mann, C., Feldmann, H., Hochstrasser, M., Vierstra, R., Johnston, S., Hampton, R., Haber, J., McCusker, J., Silver, P., Frontali, L., Thorsness, P., Varshavsky, A., Byers, B., et al., Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle, Trends Biochem. Sci., 1998, vol. 23, p. 244. https://doi.org/10.1016/s0968-0004(98)01222-5

    Article  CAS  PubMed  Google Scholar 

  31. Fort, P., Kajava, A.V., Delsuc, F., and Coux, O., Evolution of proteasome regulators in eukaryotes, Genome Biol. Evol., 2015, vol. 7, p. 1363. https://doi.org/10.1093/gbe/evv068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fu, X., The immunogenicity of cells derived from induced pluripotent stem cells, Cell. Mol. Immunol., 2014, vol. 11, p. 14. https://doi.org/10.1038/cmi.2013.60

    Article  CAS  PubMed  Google Scholar 

  33. Fuchs, G., Shema, E., Vesterman, R., Kotler, E., Wolchinsky, Z., Wilder, S., Golomb, L., Pribluda, A., Zhang, F., Haj-Yahya, M., Feldmesser, E., Brik, A., Yu, X., Hanna, J., Aberdam, D., Domany, E., and Oren, M., RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation, Mol. Cell, 2012, vol. 46, p. 662. https://doi.org/10.1016/j.molcel.2012.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fujikawa, T., Oh, S.-H., Pi, L., Hatch, H.M., Shupe, T., and Petersen, B.E., Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am. J. Pathol, 2005., vol. 166, p. 1781. https://doi.org/10.1016/S0002-9440(10)62488-1

  35. Gao, C., Xiao, G., and Hu, J., Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci., 2014, vol. 4, p. 13. https://doi.org/10.1186/2045-3701-4-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao, J., Buckley, S.M., Cimmino, L., Guillamot, M., Strikoudis, A., Cang, Y., Goff, S.P., and Aifantis, I., The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis, Elife, 2015, vol. 4, p. e07539. https://doi.org/10.7554/eLife.07539

    Article  PubMed  PubMed Central  Google Scholar 

  37. Glickman, M.H., Rubin, D.M., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., Baumeister, W., Fried, V.A., and Finley, D., A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3, Cell, 1998, vol. 94, p. 615. https://doi.org/10.1016/s0092-8674(00)81603-7

    Article  CAS  PubMed  Google Scholar 

  38. Gordeev, M., Bakhmet, E., and Tomilin, A., Pluripotency dynamics during embryogenesis and in cell culture, Russ. J. Dev. Biol., 2021, vol. 52, no. 6, p. 379. https://doi.org/10.1134/S1062360421060059

    Article  CAS  Google Scholar 

  39. Groll, M., Bajorek, M., Kohler, A., Moroder, L., Rubin, D.M., Huber, R., Glickman, M.H., and Finley, D., A gated channel into the proteasome core particle, Nat. Struct. Biol., 2000, vol. 7, p. 1062. https://doi.org/10.1038/80992

    Article  CAS  PubMed  Google Scholar 

  40. Groll, M., Bochtler, M., Brandstetter, H., Clausen, T., and Huber, R., Molecular machines for protein degradation, ChemBioChem, 2005, vol. 6, p. 222. https://doi.org/10.1002/cbic.200400313

    Article  CAS  PubMed  Google Scholar 

  41. Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H.D., and Huber, R., Structure of 20S proteasome from yeast at 2.4 A resolution, Nature, 1997, vol. 386, p. 463. https://doi.org/10.1038/386463a0

    Article  CAS  PubMed  Google Scholar 

  42. Hatakeyama, S., Ubiquitin-mediated regulation of JAK-STAT signaling in embryonic stem cells, JAKSTAT, 2012, vol. 1, p. 168. https://doi.org/10.4161/jkst.21560

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hayashi, K., de Sousa Lopes, S.M.C., Tang, F., and Surani, M.A., Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states, Cell Stem Cell, 2008, vol. 3, p. 391. https://doi.org/10.1016/j.stem.2008.07.027

    Article  CAS  PubMed  Google Scholar 

  44. He, M., Zhou, Z., Shah, A.A., Zou, H., Tao, J., Chen, Q., and Wan, Y., The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics, Cell Biosci., 2016, vol. 6, p. 62. https://doi.org/10.1186/s13578-016-0127-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hernebring, M., Brolen, G., Aguilaniu, H., Semb, H., and Nystrom, T., Elimination of damaged proteins during differentiation of embryonic stem cells, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, p. 7700. https://doi.org/10.1073/pnas.0510944103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hernebring, M., Fredriksson, A., Liljevald, M., Cvijovic, M., Norrman, K., Wiseman, J., Semb, H., and Nystrom, T., Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28, Sci. Rep., 2013, vol. 3, p. 1381. https://doi.org/10.1038/srep01381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hershko, A. and Ciechanover, A., The ubiquitin system for protein degradation, Annu. Rev. Biochem., 1992, vol. 61, p. 761. https://doi.org/10.1146/annurev.bi.61.070192.003553

    Article  CAS  PubMed  Google Scholar 

  48. Hershko, A. and Ciechanover, A., The ubiquitin system, Annu. Rev. Biochem., 1998, vol. 67, p. 425. https://doi.org/10.1146/annurev.biochem.67.1.425

    Article  CAS  PubMed  Google Scholar 

  49. Inoue, D., Aihara, H., Sato, T., Mizusaki, H., Doiguchi, M., Higashi, M., Imamura, Y., Yoneda, M., Miyanishi, T., and Fujii, S., Dzip3 regulates developmental genes in mouse embryonic stem cells by reorganizing 3D chromatin conformation, Sci. Rep., 2015, vol. 5, p. 16567. https://doi.org/10.1038/srep16567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang, T.X., Zhao, M., and Qiu, X.B., Substrate receptors of proteasomes, Biol. Rev. Camb. Philos. Soc., 2018, vol. 93, p. 1765. https://doi.org/10.1111/brv.12419

    Article  PubMed  Google Scholar 

  51. Jing, X., Infante, J., Nachtman, R.G., and Jurecic, R., E3 ligase FLRF (Rnf41) regulates differentiation of hematopoietic progenitors by governing steady-state levels of cytokine and retinoic acid receptors, Exp. Hematol., 2008, vol. 36, p. 1110. https://doi.org/10.1016/j.exphem.2008.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kammerl, I.E., Dann, A., Mossina, A., Brech, D., Lukas, C., Vosyka, O., Nathan, P., Conlon, T.M., Wagner, D.E., and Overkleeft, H.S., Impairment of immunoproteasome function by cigarette smoke and in chronic obstructive pulmonary disease, Am. J. Respir. Crit. Care Med., 2016, vol. 193, p. 1230. https://doi.org/10.1164/rccm.201506-1122OC

    Article  CAS  PubMed  Google Scholar 

  53. Kim, S.-H., Kim, M.O., Cho, Y.-Y., Yao, K., Kim, D.J., Jeong, C.-H., Yu, D.H., Bae, K.B., Cho, E.J., and Jung, S.K., ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal, Stem Cell Res., 2014, vol. 13, p. 1. https://doi.org/10.1016/j.scr.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  54. Konstantinova, I.M., Tsimokha, A.S., and Mittenberg, A.G., Role of proteasomes in cellular regulation, Int. Rev. Cell. Mol. Biol., 2008, vol. 267, p. 59. https://doi.org/10.1016/S1937-6448(08)00602-3

    Article  CAS  PubMed  Google Scholar 

  55. Li, S., Xiao, F., Zhang, J., Sun, X., Wang, H., Zeng, Y., Hu, J., Tang, F., Gu, J., Zhao, Y., Jin, Y., and Liao, B., Disruption of OCT4 ubiquitination increases OCT4 protein stability and ASH2L-B-mediated H3K4 methylation promoting pluripotency acquisition, Stem Cell Rep., 2018, vol. 11, p. 973. https://doi.org/10.1016/j.stemcr.2018.09.001

    Article  CAS  Google Scholar 

  56. Liao, B., Zhong ,X., Xu, H., Xiao, F., Fang, Z., Gu, J., Chen, Y., Zhao, Y., and Jin, Y. Itch, an E3 ligase of Oct4, is required for embryonic stem cell self-renewal and pluripotency induction. J. Cell. Physiol., 2013., vol. 228, p. 1443. https://doi.org/10.1002/jcp.24297

  57. Liu, X., Yao, Y., Ding, H., Han, C., Chen, Y., Zhang, Y., Wang, C., Zhang, X., Zhang, Y., and Zhai, Y., USP21 de-ubiquitylates Nanog to regulate protein stability and stem cell pluripotency, Signal Transduct. Target. Ther., 2016, vol. 1, p. 16024. https://doi.org/10.1038/sigtrans.2016.24

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu, Y.-J., Nakamura, T., and Nakano, T., Essential role of DPPA3 for chromatin condensation in mouse oocytogenesis, Biol. Reprod., 2012, vol. 86, p. 40. https://doi.org/10.1095/biolreprod.111.095018

    Article  CAS  PubMed  Google Scholar 

  59. Liu, Y., Xu, H.W., Wang, L., Li, S.Y., Zhao, C.J., Hao, J., Li, Q.Y., Zhao, T.T., Wu, W., and Wang, Y., Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration, Cell Discov., 2018, vol. 4, p. 50. https://doi.org/10.1038/s41421-018-0053-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mattout, A. and Meshorer, E., Chromatin plasticity and genome organization in pluripotent embryonic stem cells, Curr. Opin. Cell Biol., 2010, vol. 22, p. 334. https://doi.org/10.1016/j.ceb.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  61. Meiners, S., Keller, I.E., Semren, N., and Caniard, A., Regulation of the proteasome: evaluating the lung proteasome as a new therapeutic target, Antioxid. Redox. Signal., 2014, vol. 21, p. 2364. https://doi.org/10.1089/ars.2013.5798

    Article  CAS  PubMed  Google Scholar 

  62. Meiners, S., Ludwig, A., Stangl, V., and Stangl, K., Proteasome inhibitors: poisons and remedies, Med. Res. Rev., 2008, vol. 28, p. 309. https://doi.org/10.1002/med.20111

    Article  CAS  PubMed  Google Scholar 

  63. Meshorer, E. and Misteli, T., Chromatin in pluripotent embryonic stem cells and differentiation, Nat. Rev. Mol. Cell Biol., 2006, vol. 7, p. 540. https://doi.org/10.1038/nrm1938

    Article  CAS  PubMed  Google Scholar 

  64. Miyazono, K., TGF-β signaling by Smad proteins, Cytokine Growth Factor Rev., 2000, vol. 11, p. 15. https://doi.org/10.1016/s1359-6101(99)00025-8

    Article  CAS  PubMed  Google Scholar 

  65. Morozov, A.V. and Karpov, V.L., Biological consequences of structural and functional proteasome diversity, Heliyon, 2018, vol. 4, p. e00894. https://doi.org/10.1016/j.heliyon.2018.e00894

    Article  PubMed  PubMed Central  Google Scholar 

  66. Murata, S., Takahama, Y., and Tanaka, K., Thymoproteasome: probable role in generating positively selecting peptides, Curr. Opin. Immunol., 2008, vol. 20, p. 192. https://doi.org/10.1016/j.coi.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  67. Nakagawa, T., Kajitani, T., Togo, S., Masuko, N., Ohdan, H., Hishikawa, Y., Koji, T., Matsuyama, T., Ikura, T., and Muramatsu, M., Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation, Genes Dev., 2008, vol. 22, p. 37. https://doi.org/10.1101/gad.1609708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakamura, T., Arai, Y., Umehara, H., Masuhara, M., Kimura, T., Taniguchi, H., Sekimoto, T., Ikawa, M., Yoneda, Y., and Okabe, M., PGC7/Stella protects against DNA demethylation in early embryogenesis, Nat. Cell Biol., 2007, vol. 9, p. 64. https://doi.org/10.1038/ncb1519

    Article  CAS  PubMed  Google Scholar 

  69. Nakamura, T., Liu, Y.-J., Nakashima, H., Umehara, H., Inoue, K., Matoba, S., Tachibana, M., Ogura, A., Shinkai, Y., and Nakano, T., PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos, Nature, 2012, vol. 486, p. 415. https://doi.org/10.1038/nature11093

    Article  CAS  PubMed  Google Scholar 

  70. Nandi, D., Tahiliani, P., Kumar, A., and Chandu, D., The ubiquitin-proteasome system, J. Biosci., 2006, vol. 31, p. 137. https://doi.org/10.1007/BF02705243

    Article  CAS  PubMed  Google Scholar 

  71. Ng, H.-H. and Surani, M.A., The transcriptional and signalling networks of pluripotency, Nat. Cell Biol., 2011, vol. 13, p. 490. https://doi.org/10.1038/ncb0511-490

    Article  CAS  PubMed  Google Scholar 

  72. Nguyen, D.T.T., Richter, D., Michel, G., Mitschka, S., Kolanus, W., Cuevas, E., and Wulczyn, F.G., The ubiquitin ligase LIN41/TRIM71 targets p53 to antagonize cell death and differentiation pathways during stem cell differentiation, Cell Death Differ., 2017, vol. 24, p. 1063. https://doi.org/10.1038/cdd.2017.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Noormohammadi, A., Calculli, G., Gutierrez-Garcia, R., Khodakarami, A., Koyuncu, S., and Vilchez, D., Mechanisms of protein homeostasis (proteostasis) maintain stem cell identity in mammalian pluripotent stem cells, Cell. Mol. Life Sci., 2018, vol. 75, p. 275. https://doi.org/10.1007/s00018-017-2602-1

    Article  CAS  PubMed  Google Scholar 

  74. Okita, Y., Matsumoto, A., Yumimoto, K., Isoshita, R., and Nakayama, K.I., Increased efficiency in the generation of induced pluripotent stem cells by F bxw7 ablation, Genes Cells, 2012, vol. 17, p. 768. https://doi.org/10.1111/j.1365-2443.2012.01626.x

    Article  CAS  PubMed  Google Scholar 

  75. Okita, Y. and Nakayama, K.I., UPS delivers pluripotency, Cell Stem Cell, 2012, vol. 11, p. 728. https://doi.org/10.1016/j.stem.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  76. Okumura, F., Matsunaga, Y., Katayama, Y., Nakayama, K.I., and Hatakeyama, S., TRIM8 modulates STAT3 activity through negative regulation of PIAS3, J. Cell Sci., 2010, vol. 123, p. 2238. https://doi.org/10.1242/jcs.068981

    Article  CAS  PubMed  Google Scholar 

  77. Osmulski, P.A., Hochstrasser, M., and Gaczynska, M., A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the alpha-ring channel, Structure, 2009, vol. 17, p. 1137. https://doi.org/10.1016/j.str.2009.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pak, C., Danko, T., Zhang, Y., Aoto, J., Anderson, G., Maxeiner, S., Yi, F., Wernig, M., and Südhof, T.C., Human neuropsychiatric disease modeling using conditional deletion reveals synaptic transmission defects caused by heterozygous mutations in NRXN1, Cell Stem Cell, 2015, vol. 17, p. 316. https://doi.org/10.1016/j.stem.2015.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pan, J., Deng, Q., Jiang, C., Wang, X., Niu, T., Li, H., Chen, T., Jin, J., Pan, W., Cai, X., Yang, X., Lu, M., Xiao, J., and Wang, P., USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer, Oncogene, 2015, vol. 34, p. 3957. https://doi.org/10.1038/onc.2014.327

    Article  CAS  PubMed  Google Scholar 

  80. Pickering, A.M. and Davies, K.J., Degradation of damaged proteins: the main function of the 20S proteasome, Prog. Mol. Biol. Transl. Sci., 2012, vol. 109, p. 227. https://doi.org/10.1016/B978-0-12-397863-9.00006-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qian, M.X., Pang, Y., Liu, C.H., Haratake, K., Du, B.Y., Ji, D.Y., Wang, G.F., Zhu, Q.Q., Song, W., Yu, Y., Zhang, X.X., Huang, H.T., Miao, S., Chen, L.B., Zhang, Z.H., Liang, Y.N., et al., Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis, Cell, 2013, vol. 153, p. 1012. https://doi.org/10.1016/j.cell.2013.04.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rezania, A., Bruin, J.E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., O’dwyer, S., Quiskamp, N., Mojibian, M., and Albrecht, T., Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells, Nat. Biotechnol., 2014, vol. 32, p. 1121. https://doi.org/10.1038/nbt.3033

    Article  CAS  PubMed  Google Scholar 

  83. Sang, H., Wang, D., Zhao, S., Zhang, J., Zhang, Y., Xu, J., Chen, X., Nie, Y., Zhang, K., and Zhang, S., Dppa3 is critical for Lin28a-regulated ES cells naïve–primed state conversion, J. Mol. Cell Biol., 2019, vol. 11, p. 474. https://doi.org/10.1093/jmcb/mjy069

    Article  CAS  PubMed  Google Scholar 

  84. Saretzki, G., Armstrong, L., Leake, A., Lako, M., and von Zglinicki, T., Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells, Stem Cells, 2004, vol. 22, p. 962. https://doi.org/10.1634/stemcells.22-6-962

    Article  CAS  PubMed  Google Scholar 

  85. Saric, T., Chang, S.-C., Hattori, A., York, I.A., Mar-kant, S., Rock, K.L., Tsujimoto, M., and Goldberg, A.L., An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides, Nat. Immunol., 2002, vol. 3, p. 1169. https://doi.org/10.1038/ni859

    Article  CAS  PubMed  Google Scholar 

  86. Sato, N., Sanjuan, I.M., Heke, M., Uchida, M., Naef, F., and Brivanlou, A.H., Molecular signature of human embryonic stem cells and its comparison with the mouse, Dev. Biol., 2003, vol. 260, p. 404. https://doi.org/10.1016/s0012-1606(03)00256-2

    Article  CAS  PubMed  Google Scholar 

  87. Schuldiner, M., Eiges, R., Eden, A., Yanuka, O., Itskovitz-Eldor, J., Goldstein, R.S., and Benvenisty, N., Induced neuronal differentiation of human embryonic stem cells, Brain Res., 2001, vol. 913, p. 201. https://doi.org/10.1016/s0006-8993(01)02776-7

    Article  CAS  PubMed  Google Scholar 

  88. Schwartz, S.D., Regillo, C.D., Lam, B.L., Eliott, D., Rosenfeld, P.J., Gregori, N.Z., Hubschman, J.-P., Davis, J.L., Heilwell, G., and Spirn, M., Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies, Lancet, 2015, vol. 385, p. 509. https://doi.org/10.1016/S0140-6736(14)61376-3

    Article  PubMed  Google Scholar 

  89. Seemuller, E., Lupas, A., Stock, D., Lowe, J., Huber, R., and Baumeister, W., Proteasome from Thermoplasma acidophilum: a threonine protease, Science, 1995, vol. 268, p. 579. https://doi.org/10.1126/science.7725107

    Article  CAS  PubMed  Google Scholar 

  90. Selenina, A.V., Tsimokha, A.S., and Tomilin, A.N., Proteasomes in protein homeostasis of pluripotent stem cells, Acta Naturae, 2017, vol. 9, no. 3, p. 42.

    Article  Google Scholar 

  91. Sinenko, S.A., Starkova, T.Y., Kuzmin, A.A., and Tomilin, A.N., Physiological signaling functions of reactive oxygen species in stem cells: from flies to man, Front. Cell Dev. Biol., 2021, vol. 9, p. 714370. https://doi.org/10.3389/fcell.2021.714370

    Article  PubMed  PubMed Central  Google Scholar 

  92. Smalle, J. and Vierstra, R.D., The ubiquitin 26S proteasome proteolytic pathway, Annu. Rev. Plant Biol., 2004, vol. 55, p. 555. https://doi.org/10.1146/annurev.arplant.55.031903.141801

    Article  CAS  PubMed  Google Scholar 

  93. Stadtmueller, B.M. and Hill, C.P., Proteasome activators, Mol. Cell, 2011, vol. 41, p. 8. https://doi.org/10.1016/j.molcel.2010.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun, X.X., He, X., Yin, L., Komada, M., Sears, R.C., and Dai, M.S., The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, p. 3734. https://doi.org/10.1073/pnas.1411713112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Suresh, B., Lee, J., Kim, K.S., and Ramakrishna, S., The importance of ubiquitination and deubiquitination in cellular reprogramming, Stem Cells Int., 2016, vol. 2016, p. 6705927. https://doi.org/10.1155/2016/6705927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 126, p. 663. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  97. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M., Embryonic stem cell lines derived from human blastocysts, Science, 1998, vol. 282, p. 1145. https://doi.org/10.1126/science.282.5391.1145

    Article  CAS  PubMed  Google Scholar 

  98. Uechi, H., Hamazaki, J., and Murata, S., Characterization of the testis-specific proteasome subunit alpha4s in mammals, J. Biol. Chem., 2014, vol. 289, p. 12365. https://doi.org/10.1074/jbc.M114.558866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Urbach, A. and Benvenisty, N., Studying early lethality of 45, XO (Turner’s syndrome) embryos using human embryonic stem cells. PLoS One, 2009., vol. 4, p. e4175. https://doi.org/10.1371/journal.pone.0004175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Uyama, M., Sato, M.M., Kawanami, M., and Tamura, M., Regulation of osteoblastic differentiation by the proteasome inhibitor bortezomib, Genes Cells, 2012, vol. 17, p. 548. https://doi.org/10.1111/j.1365-2443.2012.01611.x

    Article  CAS  PubMed  Google Scholar 

  101. van der Stoop, P., Boutsma, E.A., Hulsman, D., Noback, S., Heimerikx, M., Kerkhoven, R.M., Voncken, J.W., Wessels, L.F., and van Lohuizen, M., Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells, PLoS One, 2008, vol. 3, p. e2235. https://doi.org/10.1371/journal.pone.0002235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Verma, R., Aravind, L., Oania, R., McDonald, W.H., Yates, J.R., 3rd, Koonin, E.V., and Deshaies, R.J., Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome, Science, 2002, vol. 298, p. 611. https://doi.org/10.1126/science.1075898

    Article  CAS  PubMed  Google Scholar 

  103. Vilchez, D., Boyer, L., Lutz, M., Merkwirth, C., Morantte, I., Tse, C., Spencer, B., Page, L., Masliah, E., Berggren, W.T., Gage, F.H., and Dillin, A., FOXO4 is necessary for neural differentiation of human embryonic stem cells, Aging Cell, 2013, vol. 12, p. 518. https://doi.org/10.1111/acel.12067

    Article  CAS  PubMed  Google Scholar 

  104. Vilchez, D., Boyer, L., Morantte, I., Lutz, M., Merkwirth, C., Joyce, D., Spencer, B., Page, L., Masliah, E., Berggren, W.T., Gage, F.H., and Dillin, A., Increased proteasome activity in human embryonic stem cells is regulated by PSMD11, Nature, 2012a, vol. 489, p. 304. https://doi.org/10.1038/nature11468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vilchez, D., Morantte, I., Liu, Z., Douglas, P.M., Merkwirth, C., Rodrigues, A.P., Manning, G., and Dillin, A., RPN-6 determines C. elegans longevity under proteotoxic stress conditions, Nature, 2012b, vol. 489, p. 263. https://doi.org/10.1038/nature11315

    Article  CAS  PubMed  Google Scholar 

  106. Voutsadakis, I.A., The ubiquitin–proteasome system and signal transduction pathways regulating epithelial mesenchymal transition of cancer, J. Biomed. Sci., 2012, vol. 19, p. 67. https://doi.org/10.1186/1423-0127-19-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, D., Bu, F., and Zhang, W., The role of ubiquitination in regulating embryonic stem cell maintenance and cancer development, Int. J. Mol. Sci., 2019, vol. 20, p. 2667. https://doi.org/10.3390/ijms20112667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, X., Meul, T., and Meiners, S., Exploring the proteasome system: a novel concept of proteasome inhibition and regulation, Pharmacol. Ther., 2020, vol. 211, p. 107526. https://doi.org/10.1016/j.pharmthera.2020.107526

    Article  CAS  PubMed  Google Scholar 

  109. Watanabe, M., Takahashi, H., Saeki, Y., Ozaki, T., Itoh, S., Suzuki, M., Mizushima, W., Tanaka, K., and Hata-keyama, S., The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARγ, Elife, 2015, vol. 4, p. e05615. https://doi.org/10.7554/eLife.05615

    Article  PubMed  PubMed Central  Google Scholar 

  110. Weitzman, M.D., Lilley, C.E., and Chaurushiya, M.S., Genomes in conflict: maintaining genome integrity during virus infection, Annu. Rev. Microbiol., 2010, vol. 64, p. 61. https://doi.org/10.1146/annurev.micro.112408.134016

    Article  CAS  PubMed  Google Scholar 

  111. Werner, A., Manford, A.G., and Rape, M., Ubiquitin-dependent regulation of stem cell biology, Trends Cell Biol., 2017, vol. 27, p. 568. https://doi.org/10.1016/j.tcb.2017.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xiao, N., Eto, D., Elly, C., Peng, G., Crotty, S., and Liu, Y.-C., The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells, Nat. Immunol., 2014, vol. 15, p. 657. https://doi.org/10.1038/ni.2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xu, H., Wang, W., Li, C., Yu, H., Yang, A., Wang, B., and Jin, Y., WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells, Cell Res., 2009, vol. 19, p. 561. https://doi.org/10.1038/cr.2009.31

    Article  CAS  PubMed  Google Scholar 

  114. Yadav, D., Lee, J.Y., Puranik, N., Chauhan, P.S., Chavda, V., Jin, J.-O., and Lee, P.C., Modulating the ubiquitin–proteasome system: a therapeutic strategy for autoimmune diseases, Cells, 2022, vol. 11, p. 1093. https://doi.org/10.3390/cells11071093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yao, T. and Cohen, R.E., A cryptic protease couples deubiquitination and degradation by the proteasome, Nature, 2002, vol. 419, p. 403. https://doi.org/10.1038/nature01071

    Article  CAS  PubMed  Google Scholar 

  116. Young, L.E., Fernandes, K., McEvoy, T.G., Butterwith, S.C., Gutierrez, C.G., Carolan, C., Broad-bent, P.J., Robinson, J.J., Wilmut, I., and Sinclair, K.D., Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture, Nat. Genet., 2001, vol. 27, p. 153. https://doi.org/10.1038/84769

    Article  CAS  PubMed  Google Scholar 

  117. Young, R.A., Control of the embryonic stem cell state, Cell, 2011, vol. 144, p. 940. https://doi.org/10.1016/j.cell.2011.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, F., Hu, Y., Huang, P., Toleman, C.A., Paterson, A.J., and Kudlow, J.E., Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6, J. Biol. Chem., 2007, vol. 282, p. 22460. https://doi.org/10.1074/jbc.M702439200

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, F. and Laiho, M., On and off: proteasome and TGF-beta signaling. Exp. Cell Res, 2003., vol. 291, p. 275. https://doi.org/10.1016/j.yexcr.2003.07.007

  120. Zhang, X., Linder, S., and Bazzaro, M., Drug development targeting the ubiquitin–proteasome system (UPS) for the treatment of human cancers, Cancers, 2020., vol. 12, p. 902. https://doi.org/10.3390/cancers12040902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, Y., Ding, H., Wang, X., Wang, X., Wan, S., Xu, A., Gan, R., and Ye, S.-D., MK2 promotes Tfcp2l1 degradation via β-TrCP ubiquitin ligase to regulate mouse embryonic stem cell self-renewal, Cell Rep., 2021, vol. 37, p. 109949. https://doi.org/10.1016/j.celrep.2021.109949

    Article  CAS  PubMed  Google Scholar 

  122. Zhao, S., Zhang, C., Xu, J., Liu, S., Yu, L., Chen, S., Wen, H., Li, Z., and Liu, N., Dppa3 facilitates self-renewal of embryonic stem cells by stabilization of pluripotent factors, Stem Cell Res. Ther., 2022, vol. 13, p. 169. https://doi.org/10.1186/s13287-022-02846-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhou, L., Mideros, S.X., Bao, L., Hanlon, R., Arredondo, F.D., Tripathy, S., Krampis, K., Jerauld, A., Evans, C., and St Martin, S.K., Infection and genotype remodel the entire soybean transcriptome, BMC Genomics, 2009, vol. 10, p. 49. https://doi.org/10.1186/1471-2164-10-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou, W., Zhu, P., Wang, J., Pascual, G., Ohgi, K.A., Lozach, J., Glass, C.K., and Rosenfeld, M.G., Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation, Mol. Cell, 2008, vol. 29, p. 69. https://doi.org/10.1016/j.molcel.2007.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was performed with the financial support of Russian Science Foundation (grant no. 22-14-00390).

Author information

Authors and Affiliations

Authors

Contributions

U.I. Podenkova, I.V. Zubarev: writing the main part of the work, selection of literature (made an equal contribution to the preparation of the article). U.I. Podenkova and A.S. Tsimokha: preparation of illustrations. A.S. Tsimokha: selection of literature, writing a conclusion; A.N. Tomilin and A.S. Tsimokha: final edits.

Corresponding author

Correspondence to A. S. Tsimokha.

Ethics declarations

The authors declare that they have no conflicts of interest.

This paper does not contain information on any studies involving humans or animals performed by the authors.

Additional information

Abbreviations: PSCs—pluripotent stem cells; iPSCs—induced pluripotent stem cells; UPS—ubiquitin-proteasome system; ESCs—embryonic stem cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podenkova, U.I., Zubarev, I.V., Tomilin, A.N. et al. Ubiquitin-Proteasome System in the Regulation of Cell Pluripotency and Differentiation. Cell Tiss. Biol. 17, 441–453 (2023). https://doi.org/10.1134/S1990519X23050103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23050103

Keywords:

Navigation