Skip to main content
Log in

Dependence of the Viability of Ras-Expressing Cells on Damage to Mitochondria Caused by Antitumor Agents

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Tumors with ocogenic Ras protein expression are hard to cure, since they are able to restore viability after treatment with antitumor agents by activating cytoprotective processes. The search for new targets for more effective therapy has shown that mitochondria can serve as such a target, since Ras-expressing cells receive ATP primarily through oxidative phosphorylation, rather than glycolysis, like many other types of tumor cells. The study investigated the death of tumor cells expressing oncogenic Ras after X-ray irradiation in comparison with inhibitor of mitochondrial integrity ABT199 inhibitor (venetoclax) of mitochondrial integrity. It was shown that cells show different response in time to the action of damaging agents. In the early stages (2–24 h after of treatment), autophagy is activated, which eliminates damaged mitochondria and increases cell viability, while the appearance of senescent cells after 72 h is part of a late response that suppresses proliferation. Inhibition of autophagy and senescence increases cell death under the action of damaging agents, which indicates that these processes play a key role in inhibition of cell death after mitochondrial damage. Thus, inhibition of autophagy and senescence can increase the efficiency of tumor cell elimination by antitumor agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Altman, J.K., Szilard, A., Goussetis, D.J., Sassano, A., Colamonici, M., Gounaris, E., Frankfurt, O., Giles, F.J., Eklund, E.A., Beauchamp, E.M., and Platanias, L.C., Autophagy is a survival mechanism of acute myelogenous leukemia precursors during dual mTORC2/mTORC1 targeting, Clin. Cancer Res., 2014, vol. 20, p. 2400.

    Article  CAS  Google Scholar 

  2. Amaravadi, R.K., Yu, D., Lum, J.J., Bui, T., Christophorou, M.A., Evan, G.I., Thomas-Tikhonenko, A., and Thompson, C.B., Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma, J. Clin. Invest., 2007, vol. 117, p. 326.

    Article  CAS  Google Scholar 

  3. Blagosklonny, M.V., Cell cycle arrest is not senescence, Aging (Albany, N.Y.), 2011a, vol. 3, p. 94.

    CAS  Google Scholar 

  4. Blagosklonny, M.V., Molecular damage in cancer: an argument for mTOR-driven aging, Aging (Albany, N.Y.), 2011b, vol. 3, p. 1130.

    CAS  Google Scholar 

  5. Blagosklonny, M.V., Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging, Aging (Albany, N.Y.), 2012, vol. 4, p. 159.

    CAS  Google Scholar 

  6. Campisi, J., Cellular senescence: putting the paradoxes in perspective, Curr. Opin. Genet. Dev., 2011, vol. 21, p. 107.

    Article  CAS  Google Scholar 

  7. Choudhary, G.S., Al-Harbi, S., Mazumder, S., Hill, B.T., Smith, M.R., Bodo, J., His, E.D., and Almasan, A., MCL‑1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies, Cell Death Dis., 2015, vol. 6, no. 1. e1593. https://doi.org/10.1038/cddis.2014.525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Liskens, M., Rubelj, I., and Pereira-Smith, O., A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, p. 9363.

    Article  CAS  Google Scholar 

  9. Ewald, J.A., Desotelle, J.A., Wilding, G., and Jarrard, D.F., Therapy-induced senescence in cancer, J. Natl. Cancer Inst., 2010, vol. 102, p. 1536.

    Article  CAS  Google Scholar 

  10. Fan, Q.W., Cheng, C., Hackett, C., Feldman, M., Houseman, B.T., Nicolaides, T., Haas-Kogan, D., James, C.D., Oakes, S.A., Debnath, J., Shokat, K.M., and Weiss, W.A., Akt and autophagy cooperate to promote survival of drug-resistant glioma, Sci. Signal., 2010, vol. 3, p. ra81. https://doi.org/10.1126/scisignal.2001017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernández-Medarde, A. and Santos, E., Ras in cancer and developmental diseases, Genes Cancer, 2011, vol. 2, p. 344.

    Article  Google Scholar 

  12. Ganley, IG, Lam, du, H, Wang, J, Ding, X, Chen, S, and Jiang, X., ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy, J. Biol. Chem., 2009, vol. 284, p. 12297.

    Article  CAS  Google Scholar 

  13. Gordeev, S.A., Bykova, T.V., Zubova, S.G., Aksenov, N.D., and Pospelova, T.V., Antiapoptotic gene bcl-2 prevents cellular senescence program reactivation induced by histone deacetylase inhibitor sodium butyrate in E1A and cHa-ras transformed rat fibroblasts, Tsitologiya, 2015a, vol. 57, no. 2, p. 135.

    CAS  Google Scholar 

  14. Gordeev, S.A., Bykova, T.V., Zubova, S.G., Bystrova, O.A., Martynova, M.G., Pospelov, V.A., and Pospelova, T.V., mTOR kinase inhibitor pp242 causes mitophagy terminated by apoptotic cell death in E1A-Ras transformed cells, Oncotarget, 2015b, vol. 6, p. 44905.

    Article  Google Scholar 

  15. Guo, J.Y., Chen, H., Mathew, R., Fan, J., Strohecker, A.M., Karsli-Uzunbas, G., Kamphorst, J.J., Chen, G., Lemons, J.M.S., Karantza, V., Coller, H.A., Dipaola, R.S., and Gelinas, C., et, al., Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis, Genes Dev., 2011, vol. 25, p. 460.

    Article  CAS  Google Scholar 

  16. Hanahan, D. and Weinberg, R.A., Hallmarks of cancer: the next generation, Cell, 2011, vol. 144, p. 646.

    Article  CAS  Google Scholar 

  17. Hernandez-Segura, A., Nehme, J., and Demaria, M., Hallmarks of cellular senescence, Trends Cell Biol., 2018, vol. 28, p. 436.

    Article  CAS  Google Scholar 

  18. Hosokawa, N, Hara, T, Kaizuka, T, Kishi, C, Takamu-ra, A, Miura, Y, Iemura, S, Natsume, T, Takehana, K, Yamada, N, Guan, JL, Oshiro, N, and Mizushima, N., Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy, Mol. Biol. Cell, 2009, vol. 20, p. 1981.

    Article  CAS  Google Scholar 

  19. Lampson, B.L. and Davids, M.S., The development and current use of BCL-2 inhibitors for the treatment of chronic lymphocytic leukemia, Curr. Hematol. Malig. Rep., 2017, vol. 12, p. 11.

    Article  Google Scholar 

  20. Mariño, G., Pietrocola, F., Eisenberg, T., Kong, Y., Malik, S.A., Andryushkova, A., Schroeder, S., Pendl, T., Harger, A., Niso-Santano, M., Zamzami, N., Scoazec, M., Durand, S., Enot, D.P., Fernández, Á.F., et al., Regulation of autophagy by cytosolic acetyl-coenzyme A, Mol. Cell, 2014, vol. 53, p. 710.

    Article  Google Scholar 

  21. Monick, M.M., Powers, L.S., Barrett, C.W., Hinde, S., Ashare, A., Groskreutz, D.J., Nyunoya, T., Coleman, M., Spitz, D.R., and Hunninghake, G.W., Constitutive ERK MAPK activity regulates macrophage ATP production and mitochondrial integrity, J. Immunol., 2008, vol. 180, p. 7485.

    Article  CAS  Google Scholar 

  22. Niu, N., Li, Z., Zhu, M., Sun, H., Yang, J., Xu, S., Zhao, W., and Song, R., Effects of nuclear respiratory factor-1 on apoptosis and mitochondrial dysfunction induced by cobalt chloride in H9C2 cells, Mol. Med. Rep., 2019, vol. 19, p. 2153.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Porporato, P.E., Filigheddu, N., Bravo-San, Pedro, J.M., Kroemer, G., and Galluzzi, L., Mit. Metabol. Cancer. Cell Res., 2018, vol. 28, p. 265.

    Article  CAS  Google Scholar 

  24. Quadir, M.A., Kwok, B., Dragowska, W.H., To, K.H., Le, D., Bally, M.B., and Gorski, S.M., Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization, Breast Cancer Res. Treat., 2008, vol. 112, p. 389.

    Article  Google Scholar 

  25. Ryu, S.J., Oh, Y.S., and Park, S.C., Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts, Cell Death Differ., 2007, vol. 14, p. 1020.

    Article  CAS  Google Scholar 

  26. Sarbassov, D.D., Ali, S.M., and Sabatini, D.M., Growing roles for the mTOR pathway, Curr. Opin. Cell Biol., 2005, vol. 17, p. 596.

    Article  CAS  Google Scholar 

  27. Serrano, C., Romagosa, C., Hernández-Losa, J., Simonetti, S., Valverde, C., Moliné, T., Somoza, R., Pérez, M., Vélez, R., Vergés, R., Domínguez, R., Carles, J., and Ramón, Y, Cajal, S., RAS/MAPK pathway hyperactivation determines poor prognosis in undifferentiated pleomorphic sarcomas, Cancer, 2016, vol. 122, p. 99.

    Article  CAS  Google Scholar 

  28. Toussaint, O., Medrano, E.E., and von Zglinicki, T., Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes, Exp. Gerontol., 2000, vol. 35, p. 927.

    Article  CAS  Google Scholar 

  29. Trotta, A.P., Gelles, J.D., Serasinghe, M.N., Loi, P., Arbiser, J.L., and Chipuk, J.E., Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition, J. Biol. Chem., 2017, vol. 292, p. 11727.

    Article  CAS  Google Scholar 

  30. Viale, A., Pettazzoni, P., Lyssiotis, C.A., Ying, H., Sánchez, N., Marchesini, M., Carugo, A., Green, T., Seth, S., Giuliani, V., Kost-Alimova, M., Muller, F., Colla, S., Nezi, L., Genovese, G., et al., Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function, Nature, 2014, vol. 514, p. 628.

    Article  CAS  Google Scholar 

  31. Von Zglinicki, T, Saretzki, G, Ladhoff, J, d’Adda, di Fagagna, F, and Jackson, S., Human cell senescence as a DNA damage response, Mech. Ageing Dev., 2005, vol. 126, p. 111.

    Article  CAS  Google Scholar 

  32. Wang, K. and Klionsky, D.J., Mitochondria removal by autophagy, Autophagy, 2011, vol. 7, p. 297.

    Article  CAS  Google Scholar 

  33. Warburg, O., On the origin of cancer cells, Science, 1956a, vol. 123, p. 309.

    Article  CAS  Google Scholar 

  34. Warburg, O., On respiratory impairment in cancer cells, Science, 1956b, vol. 124, p. 269.

    CAS  PubMed  Google Scholar 

  35. Weinberg, F., Hamanaka, R., Wheaton, W.W., Weinberg, S., Joseph, J., Lopez, M., Kalyanaraman, B., Mutlu, G.M., Budinger, G.R.S., and Chandel, N.S., Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, p. 8788.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by budgetary funding from the Institute of Cytology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Kochetkova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetkova, E.Y., Blinova, G.I., Boytsov, A.S. et al. Dependence of the Viability of Ras-Expressing Cells on Damage to Mitochondria Caused by Antitumor Agents. Cell Tiss. Biol. 14, 437–447 (2020). https://doi.org/10.1134/S1990519X20060061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X20060061

Keywords:

Navigation