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Abstract—We propose an algorithm for modeling scenarios for newly diagnosed cases
of COVID-19 in the Republic of Kazakhstan. The algorithm is based on treating incom-
plete epidemiological data and solving the inverse problem of reconstructing the parameters
of the agent-based model (ABM) using the set of available epidemiological data. The main
tool for constructing the ABM is the Covasim open library. In the event of a drastic change
in the situation (appearance of a new strain, removal or introduction of restrictive measures,
etc.), the model parameters are updated taking into account additional information for the
previous month (online data assimilation). The inverse problem is solved by stochastic global
optimization (of tree-structured Parzen estimators). As an example, we give two scenarios of
COVID-19 propagation calculated on December 12, 2021 for the period up to January 20, 2022.
The scenario that took into account the New Year holidays (published on December 12, 2021
on http://covid19-modeling.ru) almost coincided with what happened in reality (the error
was 0.2%).
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INTRODUCTION

From December 2019 to September 2022, more than 604 million cases of COVID-19 infection were
registered in the world, of which approximately 6.5 million were fatal. As of September 5, 2022, the
Republic of Kazakhstan (RK) ranks 51st among 216 countries in terms of the number of detected
cases of COVID-19 and 119th in terms of the share of the population vaccinated against COVID-19.
Agent-based models of the spread of infectious diseases are used to monitor the epidemiological
situation in regions and countries as well as to analyze the efficiency of containment measures.

The agent-based model (ABM) of the spread of COVID-19 allows one
– To take into account demographic information for a specific country (the number and age

structure of the population).
– To build realistic transmission networks in various social strata, including households, schools,

organizations, and public places.
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– To take into account the age-related features of the development of the disease.
– To determine the viral burden of the agent, including the rate of transmission of the infection.
– To take into account physical distancing and wearing of masks, vaccination, testing (including

asymptomatic), isolation, contact monitoring, quarantine in regions with 100 to 20 000 000
people [1–3].

In the agent-based model, each acting agent is equipped with attributes (age, social status,
susceptibility to disease, etc.).

Brief Survey of Papers on COVID-19 ABM
Here is a brief survey of the publications on agent-based modeling of COVID-19, which are

largely based on earlier work on the modeling of infectious diseases in 2013 [4] and 2020 [5].
Aleta et al. [6] used ABM to describe the spread of COVID-19 in Boston. A response system

based on advanced testing and contact tracing has been shown to play an important role in easing
social distancing restrictions in the absence of herd immunity against SARS-CoV-2.

Lau et al. [7] calculated, using the example of the state of Georgia in the USA, that infected
people under 60 years of age can be 2.78 times more contagious than older people and tend to be
the main driving force of superspreading.

In [8–10], antiepidemic programs in various regions of France and the UK were analyzed based
on the ABM of the spread of COVID-19. It was shown that to control a new wave of the COVID-19
outbreak, it suffices to use contact and isolation data over the most recent three months.

Nielsen and Sneppen [11] constructed an ABM in which superspreaders acted as infection sources,
and it was shown that superspreading dramatically increases the importance of restrictions on
personal contacts.

In 2021, a group of American scientists [3] developed the Covasim software package [12], which is
based on an agent-based approach to modeling an epidemic taking into account the characteristics
of the disease as well as pharmaceutical (vaccination) and social (restricted visits, wearing masks)
measures. This software package has been used to build COVID-19 epidemic scenarios, study
pandemic dynamics, and support administrative decision-making in more than a dozen countries in
Africa, Asia-Pacific, Europe, and North America.

Open-Source Software Packages
Here is a brief overview of the software systems on the spread of COVID-19.
1. http://covid19-scenarios.org, Basel University, Switzerland. An age-structured compart-

mental model of the spread of coronavirus infection is being implemented, based on 9 differ-
ential equations with the possibility of varying model parameters [13].

2. http://covid19.biouml.org, Institute of Computational Technologies, Siberian Branch of
the Russian Academy of Sciences, Novosibirsk. The spread of COVID-19 in Moscow, the
Novosibirsk oblast, Germany, France, and Italy is modeled. The package uses extended com-
partmental and agent-based models whose parameters are identified on the basis of published
statistics. Forecasts are made not only of the number of registered cases, cured and dead, but
also of the number of free beds, artificial lung ventilation (ALV) devices, and other character-
istics necessary for effective management of the situation in an epidemic.

3. http://anylogic.com/healthcare, Bogota, Colombia. The package relies on an agent-based
model taking into account the geographical features of the city (location of schools, medical
institutions, public places) and the social distance between the agents with the possibility of
varying parameters.

4. http://github.com/kausaltech/reina-model, Helsinki, Finland. Based on the agent-based
model, different ages of agents and seven possible states of disease progression are taken
into account with a random structure of contacts also considered; i.e., the agents interact
randomly [14].

5. http://github.com/institutefordiseasemodeling/covasim, USA. The package is built
around an agent-based model with random structure with a possibility of identifying param-

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 17 No. 1 2023

http://covid19-scenarios.org
http://covid19.biouml.org
http://anylogic.com/healthcare
http://github.com/kausaltech/reina-model
http://github.com/institutefordiseasemodeling/covasim


96 KRIVOROTKO et al.

eters for a particular region [3]. It served as the basis for creating our own software package
(see item 6) and was also adapted to obtain results for the Republic of Kazakhstan in the
framework of the present paper.

6. http://covid19-modeling.ru, Institute of Computational Mathematics and Mathematical
Geophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk. The complex
is based on combining compartmental and agent-based models and provides the ability to
construct development scenarios by solving inverse problems [15, 16].

Inverse Problems for ABM

The same virus can spread and affect people differently in different regions. Due to the novelty
and complexity of the COVID-19 disease (frequent changes in the infectiousness of the virus and
the average age of the severe course of the disease, the duration of the incubation period, etc.),
the parameters of most mathematical models are usually unknown; this makes it difficult to adapt
existing software solutions to analyze the situation in a particular region taking into account the
introduction of restrictions during different periods and pharmaceutical interventions. The main
challenges in modeling the spread of COVID-19 are as follows.

1. The data for solving the inverse problem is incomplete and noisy and also represents big data
(daily reports of sick, infected, and vaccinated people and so on).

2. Parameters such as virus contagiousness β(t), probability of severe cases psev(t), mortal-
ity pdeath(t), etc. change over time.

3. The spread of COVID-19 changes substantially when restrictive measures are introduced or
lifted (masks, social distancing, switching to a remote working mode, closing schools, enter-
prises, districts and cities).

These problems lead to the need to consider and solve inverse problems of identifying unknown
epidemiological parameters in a particular region taking into account the mutation of the virus
and various (administrative, pharmaceutical) interventions based on additional information on the
number of PCR tests performed, detected cases, hospitalized and critically ill patients, and deaths
from COVID-19. Due to the ill-posedness of inverse problems (the solution may be nonunique
and/or unstable), regularization is used taking into account restrictions on the desired parameters
obtained from the data of the World Health Organization (WHO) and the Ministry of Health of
the region under study (in our case, the Republic of Kazakhstan).

Specific Features of the ABM in the Republic of Kazakhstan

The specific feature of the present work lies in the adaptation of the agent-based model to the
Republic of Kazakhstan taking into account the distribution of the population (by age and region)
as well as restrictive measures and the type and quality of statistical (incomplete and inaccurate)
data. As of 2021, 40.8% of the population of the Republic of Kazakhstan was rural, and its density
is comparable to that of the urban population.

We assumed that the urban and rural population of the Republic of Kazakhstan is on an equal
footing in terms of polymerase chain reaction (PCR) testing and the spread of COVID-19. The
paper proposes an algorithm for step-by-step refinement of the epidemiological parameters of the
ABM of spread of COVID-19 in the Republic of Kazakhstan, as well as an algorithm for constructing
scenarios for the development of the epidemic in a region based on a combination of machine learning
methods and solving inverse problems.

Paper Structure

For reliable modeling of certain factors in the spread of COVID-19, the calculations should be
based on adequate initial data—from the population and its distribution over social groups to the
workload of various modes of transport or shops [1]. Due to incomplete and noisy statistical data,
the paper uses methods of machine learning and regression analysis and of processing and analysis
of time series. The time series (the number of PCR tests performed) is extrapolated based on
statistical models so as to construct scenarios for the spread of COVID-19 used in the agent-based
approach (Sec. 1). Based on the characteristics of the data for the Republic of Kazakhstan, in
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Sec. 2 we construct an agent-based model whose main purpose is to compile development scenarios
and assess the impact of various interventions on the epidemic and formulate the direct and inverse
problems for the ABM. Section 3 describes an algorithm for solving inverse problem based on tree-
structured Parzen estimators for minimizing the absolute objective functional and data assimilation.
In Sec. 4, scenarios for the spread of COVID-19 in the Republic of Kazakhstan are constructed and
analyzed taking into account restrictive measures from December 13, 2021 to January 20, 2022. It
is shown that an increase in the concentration of agents on New Year’s holidays in public places
(shops, theaters, parks) increases the number of detected cases of COVID-19 (by January 15, 2022,
it increased by 3.5 times compared to January 12, 2021). The main conclusions are given in the
last section.

1. Analysis of Data for the Republic of Kazakhstan

Let us present the main demographic and epidemiological data for the Republic of Kazakhstan
that were used in the subsequent construction of the agent-based model of the spread of COVID-19
described in Sec. 2.

1.1. Demographics
Statistical data on the population by age categories (age groups are divided into periods of 10

years) were provided by M. A. Bektemesov (Table 1). This kind of data is used when initiating
an artificial ABM population (see Sec. 2.2). The total population of the Republic of Kazakhstan
is 18 879 552 people.

1.2. Epidemiological Data
The data sources are
– http://ourworldindata.org (OWD).
– http://worldhealthorg.shinyapps.io/covid (WHO).
– http://coronavirus2020.kz/ru (CV2020).
– http://kt.kz (KT).
A program written in the Python programming language was created to collect and process

epidemiological data. The scheme of the program is as follows.
1. Specify the URL of the resource from which the data is collected.
2. For news sites, carry out an article search using the site’s tools and single out the necessary

statistical data.
3. In the html markup of the page, select elements containing the following data using preselected

keys:

Table 1. Distribution of the population by age in the Republic of Kazakhstan as of October 1, 2021

Age category (years) Number of people

0–9 3 890 241

10–19 2 855 522

20–29 2 537 252

30–39 2 987 296

40–49 2 292 980

50–59 1 994 801

60–69 1 439 848

70–79 588 375

80+ 293 237
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– For news sites, find data by specified keywords in sentences.
– For sites with statistics, the data does not require additional search and is selected in

a predetermined order.
The following epidemiological data on the prevalence of COVID-19 on day t were collected

and processed:
– The number T (t) of PCR tests performed (Fig. 1)—OWD.
– The number f(t) of diagnosed COVID-19 cases (PCR-positive patients) (Fig. 2)—OWD,

WHO, CV2020, KT.
– The number of vaccinated people—OWD, WHO, KT.
– The number H(t) of hospitalizations patients with COVID-19—OWD (number of beds only),

KT, CV2020.
– The number C(t) of patients connected to the ventilator—KT, CV2020.
– The number D(t) of deaths from COVID-19—OWD, WHO, CV2020, KT.
Some of the data posted on the indicated sites is incomplete (some days, weeks, and months

are missing). Missing data of intermediate values in the time series were interpolated using cubic
splines using the interpolate method of the pandas library [17].

1.3. Regression Model for Processing and Extrapolating Seasonal Time Series
The statistical data T (t) on the number of PCR tests performed in the Republic of Kazakhstan

have gaps since June 8, 2021, as well as weekly seasonality (periodicity); therefore, to build ABM-
based scenarios for the spread of COVID-19, we used the time series T (t) by the seasonal autore-
gressive model SARIMA, which is a modification of the model ARIMA (AutoRegressive Integrated
Moving Average) [18], describing one-dimensional time series with a seasonal component.

The model SARIMA(p, d, q)(P,D,Q)s for the nonstationary time series T (n) has the form [19]

Φ(Ls)φ(L)△d△D
s T (n) = θ0 +Θ(Ls)θ(L)ε(n).

Here the parameters p, d, q correspond to the nonseasonal part of the time series, and P,D,Q cor-
respond to the seasonal components of the series, s = 7 is the season length, ε(n) is stationary time
series of white noise, △d is the operator of the difference of the time series of order d that guarantees
the series being stationary (successively taking the first-order differences d times, first of the time
series and then of the resulting differences of the first order, then of the second order, and so on), △D

s

is the operator of the difference of the time series of order D for the seasonal component, φ and Φ
are the parameters of the autoregression for nonseasonal and seasonal components of the series, θ
and Θ are the parameters of the nonseasonal and seasonal sliding average, respectively, and n is
a temporal parameter (days).

The time series extrapolation algorithm is as follows.
Step 1. Apply the Box–Cox transform [18] to reduce the variance.
Step 2. Calculate the seasonal difference (shifted by s = 7 days) of the first order.
Step 3. Calculate the second difference (shifted by 1 day) of the series obtained at Step 2.
Step 4. Check whether the series obtained at Step 3 is stationary using the Dickey–Fuller crite-

rion [20].
Step 5. Pass the parameters corresponding to Steps 1–4 to the SARIMA(1, 1, 2)(0, 1, 1)7 model

and select the rest based on minimizing the Akaike information criterion. The series from
Step 1 is passed as data.

Step 6. Apply the inverse Box–Cox transform to the resulting model with the tuned hyperparam-
eters.

1.4. Time Series Extrapolation Result
A forecast of the time series T (t) of the number of daily PCR tests in the Republic of Kazakhstan

from June 8, 2021 to January 20, 2022 is presented in Fig. 1.
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Fig. 1. Statistical data on the number T (t) of PCR tests performed in the Republic of Kazakhstan, used when
constructing the model.

Fig. 2. Statistical data on diagnosed COVID-19 cases f(t) in the Republic of Kazakhstan used when constructing
the model.

In view of high fluctuations due to seasonality, as well as jumps in the time series as a result
of incorrect data collection, it was decided to presmooth the series using the Gaussian filter before
passing it to the model [21]. In this way, we get rid of the possible instability and uninterpretability
of the model results due to sharp jumps in the data obtained from the OWD open source (gray line
in Figs. 1, 2). The smoothed data that has been passed to the model is represented by the black
line in Figs. 1 and 2.

2. THE AGENT-BASED MODEL

Agent-based modeling relies on the study of the dynamics of the development of the disease by
studying the interaction between individuals, while global changes in the system arise as a result of
the activity of many agents (bottom-up modeling). A general description of the ABM of the spread
of COVID-19 in the region is given in Sec. 2.1. It includes population initiation (Sec. 2.2), disease
spread rules (Sec. 2.3), and agent testing (Sec. 2.4). In Sec. 2.5, the statement of the direct problem
for the ABM is given, and Sec. 2.6 provides the statement of the inverse problem for the ABM.

2.1. General Description of the Model

Within the framework of this study, a stochastic ABM was implemented for the Republic of
Kazakhstan. The main tool for creating the model was the Covasim library [3], implemented in
the Python language (the open source code is available at [12]) and created to study COVID-19
agent-based models with nontrivial structures. The general algorithm is as follows: all the necessary
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parameters and statistical data are loaded, and an artificial population is created taking into account
the age distribution in the region. Next, the agents are connected into contact networks, which are
complete graphs. Then a time cycle begins: at each step (the time interval is equal to one day),
the epidemiological status of the agent is updated as a superposition of probabilities taking into
account its contact structure and the restrictive measures introduced (self-isolation, closing public
places, wearing masks, etc.).

2.2. Population Initiation
The artificial population is initiated on the basis of statistical data in the region and depends on

the following parameters of the agents:
– Age (t∗). All agents are divided into age groups 10 years each (0–9, 10–19, . . . , 80+ years)

according to the statistical data of the Republic of Kazakhstan (Tab. 1).
– Social status (worker, student, child, retired), depending on the agent’s age t∗.
Households are filled with agents according to statistical data on the average family size in the

region. Depending on their age, agents contact each other in contact networks, which are complete
graphs, the degree of which is determined by a Poisson random variable with parameter λ,

– For households λ = 3.496 is the average family size (persons) [22].
– For organizations λ = 8.
– For public places and educational institutions λ = 20.
All agents have contacts in households and in public places, agents aged 6–21 years old can also

contact in educational institutions with agents of their own age, and agents aged 22–65 years old, at
work. Contact networks are built on the basis of the SynthPops open source algorithm [23], which
is able to generate realistic contact networks for populations. This method is based on previously
published models and empirical studies that allow one to determine the characteristic number of
contacts for specific age groups in the model.

In the case of educational institutions, the algorithm selects a pupil or a student and, depending
on the age, forms an age mixing matrix in the educational institution to determine the probable age
in the contact network. The students are selected from an ordered list of households so that they
reproduce an approximation to the neighborhood dynamics of children attending district educational
institutions together. Teachers and other support staff are selected from the adult population of
the workforce and are distributed as needed by schools, reflecting the average student-to-teacher to
student-to-staff ratios. In large educational institutions, close contacts are modeled by a random
set of n contacts from among those possible in the institution, where n is defined as a random
variable with a Poisson distribution with parameter λ = 20, corresponding to the average class or
group size.

The workforce is calculated using age-disaggregated employment rates, and unemployed persons
are assigned to jobs using organization size data. The primary reference worker is selected from
the labor force, and his/her colleagues are inferred based on age patterns of workforce mixing. All
workers (including teachers) are randomly selected from the population to reflect the general mix of
adults from different areas at work. Close contacts are modeled by a random set of n contacts in the
organization, where n is a Poisson random variable with parameter λ = 8, equal to the estimated
maximum number of close contacts in the workplace.

To model contacts in public places for each person, n random contacts in a population are used,
where n has a Poisson distribution with parameter λ = 20. On this level, connections reflect the
nature of contacts in parks and rest areas, shopping centers, public transport, etc. All connections
between individuals are considered undirected to reflect the ability of any individual in a pair to
infect the other.

2.3. Spread of the Disease in the ABM
Within the framework of the model, it is assumed that the virus is transmitted between agents

connected by a graph edge. Infection by close contact is described by a piecewise constant parame-
ter β(t), which, depending on the contact structure, is multiplied by the corresponding constant wβ

(for households wβ = 3, for educational institutions and places of work wβ = 0.6, and for public
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Fig. 3. Diagram of agent states in Covasim.

places wβ = 0.3). Thus, the probability of transmission of the virus is different for each contact
network.

Each agent can be in one of 9 disease stages: S susceptible to infection, E infected nonconta-
gious, A asymptomatic, Sym symptomatic patients, M mild patients, H hospitalized, C critically
ill patients (needing resuscitation), R cured, D deceased (Fig. 3). Framed are those states in which
the agent has the opportunity to get a positive test for COVID-19. Transition from one disease stage
to another is controlled by age-dependent parameters (i.e., the older the agent, the more vulnerable
he/she is): psym is the probability of showing symptoms after infection, psev is the probability of
a symptomatic patient going into a critical condition (needs hospitalization), pcrit is the probability
of a patient going from a severe condition to critical (needs resuscitation), pdeath is the probability
of death for a patient in intensive care. The numerical values of the parameters for each age group
are listed in Table 2 [3].

The duration of each stage of the disease is a random log-normal value with different mean
and variance parameters consistent with WHO statistical estimates (means and variances of the
distributions are presented in Table 3).

Thus, an agent susceptible to infection (S), upon contact with infected agents connected by
a graph edge, passes into the stage of an infected noncontagious agent (E) with probability β at
time t. Then the agent in the infected noncontagious state (E) can switch to the infected state
with symptoms (Sym) with probability psym after tsym days or remain asymptomatic (A) tinc days
after infection with probability 1 − psym. Asymptomatic patients are cured after trec1 days and
transferred to group (R). Those infected with symptoms (Sym) may develop severe disease and be
hospitalized (H) with probability psev or remain mildly ill (M ) with probability 1−psev in tinf days
after falling into group (Sym). Mild patients are cured after trec2 days and transferred to group (R).
Hospitalized patients (H) may go on to develop a critical condition (C), i.e., need a ventilator, with
probability pcrit in thosp days after hospitalization or recover with probability 1− pcrit in trec2 days.
Critically ill patients (C) die with probability pdeath in tcrit days or recover with probability 1− pdeath

Table 2. Probabilities of transition between disease stages depending on the age group

Parameter Age

0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80+

psym 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

psev 5× 10−4 0.0016 0.0072 0.0208 0.0343 0.0765 0.133 0.207 0.246

pcrit 3× 10−5 8× 10−5 4× 10−4 0.001 0.0022 0.0093 0.0364 0.089 0.174

pdeath 2× 10−5 2× 10−5 10−4 3× 10−4 0.0098 0.0026 0.008 0.024 0.082
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Table 3. Duration of disease stages in each epidemiological status

Parameter Description Distribution

tinc Number of days from exposure to the moment the agent becomes contagious LogN(4.6, 4.8) [24]

tsym Number of days since the agent became contagious to the onset of symptoms LogN(1, 0.9) [24]

trec1 Duration of illness for asymptomatic and mild cases LogN(8, 2) [25]

trec2 Duration of illness for severe and critical cases LogN(14, 2.4) [26]

tinf Number of days it takes for an agent to go from a mild to severe status LogN(6.6, 4.9) [24]

thosp Number of days it takes for an agent to go from a severe to critical status LogN(3, 7.4) [27]

tcrit Duration of an agent’s stay in a critical status LogN(6.2, 1.7) [26]

in trec2 days. All the listed probabilities can be written in the following form:

p(S → E) = β, p(E → Sym) =
psym
tsym

, p(E → A) =
1− psym

tinc
,

p(Sym→ H) =
psev
tinf

, p(Sym→M) =
1− psev
tinf

, p(H → C) =
pcrit
thosp

,

p(H → R) =
1− pcrit
trec2

, p(M → R) =
1

trec1
, p(A→ R) =

1

trec1
,

p(C → D) =
pdeath
tcrit

, p(C → R) =
1− pdeath

trec2
.

2.4. Testing Agents in the ABM
Testing of agents is carried out in the amount corresponding to the daily statistical data in

the Republic of Kazakhstan (see Sec. 1.2). The chance of being tested for COVID-19 depends on
the epidemiological state of the agent (susceptible, infected with symptoms, hospitalized, etc.). At
each modeling step, the tests are distributed among the entire population (excluding the deceased).
A positive result can be obtained by agents whose status is circled in Fig. 3 (infected asymptomatic
and with symptoms, hospitalized, mild cases, and critical cases). In the case of a positive test
for COVID-19, the agents are included in the daily detected statistics. The model assumes that
symptomatic agents are more likely to be tested than asymptomatic ones. This ratio of chances is
controlled by a parameter p reconstructed when solving the inverse problem (see Sec. 2.6).

2.5. Statement of the Direct Problem for the ABM
The direct problem of agent-based modeling is to determine the number of infected (includ-

ing f(t) cases detected as a result of PCR testing), hospitalized, deceased, and other states of the
agent that are taken into account in the ABM. In the direct problem, all input parameters of the
model are assumed to be known. In this case, the agent-based model allows one to calculate the
values of the vector

X⃗(t) =
(
S(t), E(t), A(t), Sym(t),M(t), H(t), C(t), R(t), D(t)

)
on the next day, i.e., X⃗(t+ 1). Since many parameters of the vector

q⃗(t) =
(
E(0), β, p, βd(i), βc(i)

)
, i = 1, . . . , N,

of the ABM of the spread of COVID-19 are unknown, it is necessary to state and solve the inverse
problem using additional information on the current day t. Here E(0) is the initial number of
infected, β is a virus transmission parameter, p is a testing parameter, the βd(i) are the days of
change in the parameter β, the βc(i) are the values by which the parameter β changes on days βd(i),
and i corresponds to the month of change of the contagiousness parameter β; i.e., i+ 1 = t+ 30.
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2.6. Statement of the Inverse Problem for the ABM

In this paper, its own inverse problem is solved at each time stage (equal to 30 days; see Sec. 3.2
for details). The inverse problem 1 consists in reconstructing the parameter vector

q⃗(0) =
(
E(0), β, p, βd(1), βc(1)

)
based on auxiliary information about the number f(t) of daily detected cases, t is measured in days.

The model assumes that the virus variability (the emergence of new strains, pharmaceutical and
social measures) occurs no more than once a month. In view of this, the inverse problem 2 is solved,
which consists in reconstructing the parameter vector monthly,

q⃗(t+ 30) =
(
βd(i), βc(i)

)
, i+ 1 = t+ 30,

based on auxiliary information about the number f(t) of daily detected cases. Here i corresponds
to the month of simulation.

Solution of the inverse problems of reconstructing the vector q⃗(t) was reduced to solving the
problem of minimizing the objective functional

J(q⃗ ) =

T∑
ti=1

∣∣fd(ti)− fm(ti, q⃗ )
∣∣

Mdiag

. (1)

Here fd(ti) and fm(ti, q⃗ ) are the smoothed data and the result of simulation of daily detected
cases, respectively, T is the number of simulation days, and Mdiag = max

ti
{fd(ti)} is a normalization

term.
In the papers [28, 29], the authors analyzed the sensitivity of unknown parameters to mea-

surements for the model under study using the methods of differential algebra and the Bayesian
approach. It is shown that the parameter β responsible for virus transmission is most sensitive to
measurements. With the help of sensitivity analysis methods, the range of the parameter β was
reduced by 2 times owing to the addition of auxiliary information about the epidemic (namely,
information on critical cases was added to the measurements of the number of detected cases
and deaths).

3. ALGORITHM FOR SOLVING THE INVERSE PROBLEM

In the course of solving the inverse problem, the vector of unknown parameters q⃗ was recon-
structed using the Optuna package [30], which is based on the method of tree-structured Parzen
estimators (or TPE for short) as well as the data assimilation approach for stage-by-stage recon-
struction of the agent-based model parameters (Sec. 3.2).

3.1. Method of Tree-Structured Parzen Estimators

The idea of the method is as follows: the probabilities p(q⃗ | J(q⃗ )) and p(J(q⃗ )) are calcu-
lated to determine parameter domain for minimizing the functional J . To this end, the space
DK = {qk, J(qk) | k = 1, . . . ,K} of parameter values is divided into 2 subsets Dl

Kl
and Dg

Kg
such

that Dl
Kl

contains the level quantile γ of the smallest values of the functional at points from DK(Jγ);
i.e., P (J < Jγ) = γ. The subset Dg

Kg
contains all other points from DK . Next, using the Parzen

window method, the distribution densities l(x) and g(x) obtained from Dl
Kl

and Dg
Kg

, respectively,
are estimated. Thus, using l(x), one can obtain the domain of points at which the functional reaches
its least values. Thus, the probability p(q⃗K+1|J(q⃗ )) is determined as

p
(
q⃗K+1|J(q⃗ )

)
=

l(q⃗ ), J(q⃗K+1) < Jγ

g(q⃗ ), J(q⃗K+1) ≥ Jγ .
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Then a set of vectors is generated according to the density l(x). From these vectors, we select
a vector q⃗ ∗ on which the maximum expected improvement EI(x) expressed by the following formula
is achieved:

EI(q⃗ ) =

(
γ +

g(q⃗ )

l(q⃗ )
(1− γ)

)−1

.

Convergence in probability of statistical methods is reflected in the general theorem in [31].
The stopping criterion in the presented algorithm is the limitation on the number of iterations

max_iter = 100. The scheme of the algorithm is as follows.

Algorithm 1 (tree-structured Parzen estimators algorithm).

Require: the values of parameters γ, nsamp, and max_iter

1: Initialize: the space Dinit = {q⃗k, J(q⃗k), k = 1, . . . , ninit} of values of unknown parameters
2: for m = 0, . . . ,max_iter do

3: Divide Dninit+m to generate spaces Dg
mg

,Dl
ml

4: Produce an estimate of density l(q⃗ ) for tuples of parameters from Dl
ninit+ml

5: Produce an estimate of density g(q⃗ ) for tuples of parameters from Dg
ninit+mg

6: Generate q⃗ s =
{
q⃗ s
k | k = 1, . . . , nsamp

}
, where q⃗ s

k ∼ l(q⃗ ))

7: Choose q⃗m+1 = argmax
q⃗⊂q⃗ s

EI(q⃗ )

8: Calculate J(q⃗m+1)

9: Dninit+m ← Dninit+m+1

10: end for

More details about the method of tree-structured Parzen estimators can be found in [32].

3.2. Step-by-Step Reconstruction of Unknown Parameters
The parameter β is assumed to be piecewise constant. Accordingly, the longer the simulation

period under consideration, the greater the number of unknown parameters. However, each of
the parameters βd(i) and βc(i), i = 1, . . . , N , where N = 18 is the number of simulation months,
depends only on the data on a specific simulation subperiod. Each interval was calibrated se-
quentially one after the other (data assimilation method), and the parameters reconstructed at
the previous step were used in the subsequent run of the optimization algorithm (the algorithm
is described in [33]). Thus, on the first interval from March 13, 2020 to April 12, 2020 (i = 1),
we used the vector of unknown parameters (the initial conditions at t = 0 correspond to the date
March 3, 2020)

q⃗(0) =
(
E(0), β, p, βd(1), βc(1)

)
,

and on all subsequent intervals,

q⃗(i) =
(
βd(i), βc(i)

)
, i = 2, . . . , N,

where N is the number of months of simulation.
The regularization of the solution of the inverse problem consists in the use of constraints on the

required parameters obtained in the sensitivity analysis based on the measurements used [28, 29].

4. NUMERICAL RESULTS

Let us present the results of mathematical modeling of the spread of COVID-19 in the Republic
of Kazakhstan. As shown in Sec. 3.2, at the first stage, we reconstruct the number of asymptomatic
infected patients E(0), the rate of transmission of the virus from the infected to susceptible agent β,
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Fig. 4. Graph of the change in the contagiousness parameter βc(i) and days of its change βd(i) in the Republic of
Kazakhstan in the period from March 13, 2020 to December 12, 2021.

Fig. 5. Simulation of two scenarios for the spread of daily detected cases as a result of PCR testing in the Republic
of Kazakhstan.

and the value βc(1) by which the parameter β will change on day βd(1), as well as the chance p
of being tested. Monthly, based on the solution of the inverse problem, the parameters of the
day βd(i) and the values βc(i) of the change in the rate of transmission of the virus in the Republic
of Kazakhstan were updated (the result of reconstructing βd(i) and βc(i) is shown in Fig. 4).

When constructing scenarios for the spread of daily detected cases of COVID-19, it is assumed
that the average level of testing of the population T (t) is preserved in the region. The number of
PCR tests on day t is calculated using the regression model SARIMA (see Sec. 1).

4.1. Scenarios for the Spread of COVID-19 in the Republic of Kazakhstan

Figure 5 shows the result of simulating the average number of daily detected cases as a result
of PCR testing in the Republic of Kazakhstan with a 45-day forecast (dots represent real data
from March 13, 2020 to December 12, 2021 that are involved in the solution of the inverse problem,
and triangles show data from December 13,2021 to January 1, 2022 that were used to check the
forecast). Two types of scenarios were taken into account when constructing the forecast.

– The base scenario (solid line), which did not take into account the increased congestion of
people during the New Year holidays but only the increase in the mobility of citizens in the
period of preparation for the holidays (from December 12, 2021 to December 12, 2021).

– The increased mobility of citizens for the New Year holidays (dashed line). The increased
transmission of the virus in public places in the period from January 1, 2022 to January 6, 2022
was taken into account. It is characterized by an increase in the value of βc(t) of virus
transmission by 2.5 times for the period of pre-New Year holidays December 20–30, 2021—it
reaches the value of 0.039, then increases to 0.548 in the period January 1–10, 2022, after
which it drops to 0.03.
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Fig. 6. Basic reproduction number R(t).

Based on the results of model validation, it can be concluded that taking into account the
increased mobility of citizens demonstrates a more accurate correspondence to real data. The
values of the parameter β in the second scenario (dotted line) indicate that during the New Year
holidays, the transmission of the virus increased by 3.5 times compared to early December. So, as of
January 20, 2022, the number of detected cases of COVID-19 was 12 032 people, while the number
of expected detected cases in the Republic of Kazakhstan according to the ABM base scenario
(solid line) calculated on December 12, 2021 was 4 939 people (the error 59%) and when taking into
account the increased mobility of citizens in public places, it was 12 007 people (the error 0.2%).

4.2. Base Virus Reproduction Index in the Republic of Kazakhstan

The main indicator of the spread of an epidemic is the basic reproduction number R(t), which
characterizes the average number of people who become infected from those actively infected in
a completely nonimmunized environment in the absence of special epidemiological measures. In
this paper, we used the expression for the base reproduction index proposed by Kerr et al. [3],

R(t) = IN(t) · d
IC(t)

. (2)

Here IN(t) is the number of newly infected on day t, IC(t) is the current number of infected on day t,
and d is the average duration of the disease in days. If R(t) < 1, then the epidemic is considered to
stop spreading; otherwise, it grows. Figure 6 shows the graph ofR(t) for the Republic of Kazakhstan
for the two scenarios considered above. The results show an increase in the number of detected
cases of COVID-19 in the Republic of Kazakhstan and a high burden on the healthcare system from
December 19, 2021 to January 18, 2022 for the scenario with increased mobility of citizens in public
places due to the New Year holidays (dot-and-dash line), after which the number of newly detected
cases is reduced to the volume of the base development scenario (solid line). The horizontal dashed
line denotes the threshold value R(t) = 1.

CONCLUSIONS

An agent-based model of the spread of COVID-19 in the Republic of Kazakhstan has been
developed. It is based on the Covasim software package and implemented in the Python language and
includes the initiation of the population based on the demographic data of the country and the rules
for the spread of the disease and the testing of agents depending on age and epidemiological status.
The first stage involves collection, processing, and analysis of incomplete data using regression
analysis and machine learning methods. At the second stage, the epidemiological parameters of the
agent-based model (rates of infection transmission and testing, initial number of infected agents) are
refined using additional information on the number of detected cases of COVID-19 in the Republic
of Kazakhstan. For this purpose, a data assimilation algorithm has been developed within the
framework of which unknown parameters are identified monthly with additional information about
the number of daily detected cases of COVID-19 based on the global optimization method of tree-
structured Parzen estimators. At the third stage, nonpharmaceutical interventions in the epidemic’s
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spreading process are taken into account in order to construct the most realistic scenarios for the
spread of COVID-19.

When implementing the model, data on the number of detected cases from March 13, 2020 to
December 12, 2021 in the Republic of Kazakhstan were used. It has been shown that an increase in
the density of agents during the New Year holidays in public places (shops, theaters, parks) increases
the number of detected cases of COVID-19 (by January 1, 2022, it increased by 3.5 times compared
to December 1, 2021). As an example, two scenarios are given for the spread of COVID-19 calculated
on December 12, 2021 for the period up to January 20,2022. The scenario that took into account the
New Year holidays (published on December 12, 2021 on the website http://covid19-modeling.ru)
almost coincided with what happened in reality (the error was 0.2%, or 25 people). Thus, mathe-
matical modeling makes it possible to obtain a qualitative and quantitative agreement between the
forecast of the epidemiological situation and reality.

A specific feature of modeling the spread of coronavirus infection in the Republic of Kazakhstan
is that it is necessary to take into account the concentration of the population in large cities,
including Almaty (1 993 067 people), Astana (1 199 083 people), Shymkent (1 090 160 people), and
others, inhabited by more than 11 million people, and in the villages, more than 7 million people.
For more detailed modeling of COVID-19 spread scenarios, it is necessary to take into account
traffic flows between the largest cities, as well as traffic flows at the city–region level. To obtain
more detailed scenarios for the spread of COVID-19, it is necessary to combine agent and SIR
models, as is done in the Novosibirsk oblast [2, 15, 16].

The contribution of each author to the work is as follows:
– O.I. Krivorotko and S.I. Kabanikhin: formulation of direct and inverse problems, formulation

of solution algorithms and analysis of calculation results, and coordination of work.
– M.A. Bektemesov: provision of data on the Republic of Kazakhstan.
– M.I. Sosnovskaya: implementation of the agent-based model and algorithms for solving the

direct and inverse problems.
– A.V. Neverov: data processing and development of a program for computing on the SSCC SB

RAN cluster.
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