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Abstract—The sediments provenance of the South Yellow Sea is controlled by many factors such as sea level
change, ocean circulation, and neotectonic movement. The short time scale sediments provenance changes
in this region since the Holocene have been revealed well, and a unified understanding has been formed that
the central muddy area in the South Yellow Sea is a mixed area of the Yellow River sediments and the Yangtze
River sediments. However, the contribution of different rivers to the sediments of the South Yellow Sea since
late Quaternary is still ambiguous. Through comparative analysis of several boreholes with precise annual
data constraints in the central mud area, the process of sediments provenance change at different periods
since the late Early Pleistocene (1.0 Ma) was reconstructed, and the coupling mechanism of sediments prov-
enance change and sea level change was established. It is found that during the period from 1.0 to 0.88 Ma,
the seawater entered the South Yellow Sea along the Yellow Sea trough from the southeast to north as a chan-
nel, and there were different phenomena at the same time in different regions. Since 0.88 Ma, the sea water
has been advancing from east to west. In addition, the sediments in the western of Jeju Island are mainly from
China, and the sediments in the eastern are mainly from the Korean Peninsula, which roughly coincides with
the boundary between the silty area and the sandy area on the eastern of the South Yellow Sea. In the surface
sediments, the boundary line between the Yellow River sediments and the Yangtze River sediments is approx-

imately 33.4° N.
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1. INTRODUCTION

The process of river sediments source to sink in the
East Asian continental margin is a major scientific
issue in the field of Earth sciences [1]. The evolution
of this large-scale source to sink system has been
recorded in the sedimentary stratigraphy of the shal-
low continental shelf in east China seas, which has
been an important information carrier for the recon-
struction of the tectonic uplift, monsoon evolution
and climate change of the Asian continent in the
Cenozoic [2—4]. Meanwhile, shallow-sea shelf sedi-
mentary records are also important indicators of
global sea level change [5—7].

The Yellow Sea is a typical semi-enclosed conti-
nental shelf sea, and its surrounding rivers mainly
include the Yangtze River, Huaihe River and Yellow
River in China and Han River and Geum River in
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Korean Peninsula, receiving a large number of terrige-
nous detrital materials from the rivers [8]. Under the
control of sea currents such as Yellow Sea Warm Cur-
rent and Yellow Sea Coastal Current and cold water
masses, several muddy areas were formed in the west-
ern of the North Yellow Sea, the central of the South
Yellow Sea, the southwest of Jeju Island and the
southeast of the South Yellow Sea [9]. Among them,
the muddy area in the central of the South Yellow Sea
has the most study results. Based on mineralogical and
geochemical evidence, most scholars believe that the
sediments in the muddy area in the central of the
South Yellow Sea are mainly supplied by the Yellow
River and the Yangtze River [8, 10—14]. Other poten-
tial sources are local small rivers, such as the Huaihe
River, whose annual sediment fluxes to the sea is rela-
tively low (~76 Mt/yr) and may contribute little to the
central mud area [15]. Rivers originating from the
Korean Peninsula, such as the Han River and the
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Geum River, transported sediment flux to the eastern
Yellow Sea of only 18 Mt/yr [15], and contributed little
to the central mud area sediments [8]. In addition, the
influence of aeolian dust on the deposition of the
South Yellow Sea is negligible due to the dilution of
the huge amount of sediment from the Yellow River
and Yangtze River [16]. Based on the study of NHHO1
borehole, it was found that the sediments provenance
in the South Yellow Sea was mainly controlled by the Yel-
low Riversince 0.88 Ma [17]. Detritonal zircon U-Pb age
analysis from CSDP-1 borehole showed that the Yel-
low River sediments only began to appear in the cen-
tral mud area at 0.78 Ma, and since then the Yellow
River has become the main provenance in the drilled
area [18]. Zhang et al. proposed by studying the clay
minerals of the CSDP-1 borehole that the large-scale
transgressions of the Yellow Sea and Bohai Sea
occurred roughly synchronously in the Quaternary
[19], at about 0.8 Ma. The provenance of the South
Yellow Sea sediments from 3.5 to 0.8 Ma is mainly
from the old Yangtze River, but since 0.8 Ma ago it is
mainly from the Yellow River. It is speculated that the
Yellow River has affected the South Yellow Sea since
the Middle Pleistocene at least.

The sediments provenance in the South Yellow Sea
is controlled by many factors such as sea level change
and neotectonic movement, which is one of the most
important scientific problems in this area. Most results
of'the early research were based on fine sediment (<2 um).
The short time scale provenance changes in this region
since the Holocene have been revealed well, and a uni-
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fied understanding has been formed that the central
muddy area in the South Yellow Sea is a mixed area of
the Yellow River sediments and the Yangtze River sed-
iments. However, the contribution of different rivers
to the sediments of the South Yellow Sea since late
Quaternary is still ambiguous.

2. GEOLOGICAL SETTING

The South Yellow Sea lies between China main-
land and the Korean Peninsula. In terms of regional
structure, the South Yellow Sea shelf is located in the
Lower Yangtze plate (Fig. 1), bounded by the Qianli-
yan uplift in the north, the Wunansha uplift in the
south, the Tanlu fault zone in the west, and the
Korean Peninsula in the east, with the Subei Basin in
the land and the South Yellow Sea Basin in the sea
[20—23].

The Zhe-Min Uplift is a tectonic belt spreading
NEE, separating the South Yellow Sea basin and the
East China Sea shelf basin. Its main body is in the east
of Zhejiang Province and Fujian Province, extending
northeast into the Yellow Sea and the East China Sea
seabed, and connecting with the Lingnan block in the
south of the Korean Peninsula through Suyan Reef
and Jeju Island, with a length of 2100 km and a width
of 200—300 km [24—26]. Until Jurassic, this tectonic
zone has been uplifted, only volcanic rocks without
clastic sediments accumulation [27]. The Yanshan
Movement in the Cretaceous resulted in a series of
NNE faults and faulted basins in Zhe-Min Uplift, in
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which red sandstone, glutenite, tuffaceous glutenite
and intermediate acidic volcanic rocks were accumu-
lated. Since the Neogene, the Zhe-Min Uplift has suf-
fered division and subsidence, and the sea water from
the East China Sea crossed the Zhe-Min uplift into
the Yellow Sea at about 1.66 Ma [28].

The average depth of the South Yellow Sea is 46 m,
and the deepest is located in the north of Jeju Island,
reaching 140 m [32]. The sea floor of the South Yellow
Sea consists of six topographic units: the southern
bank slope and Haizhou Bay terrace plain, the outer
tongue platform of the North bank of Jiangsu, the cen-
tral plain, the Yellow Sea Trough depression, the off-
shore platform of the Korean Peninsula and the sand
ridge of the west of Jeju Island. Among them, the Yel-
low Sea Trough depression is located in the middle of
the South Yellow Sea, close to the Korean Peninsula,
which is shallow in the north and deep in the south,
steep in the east and slow in the west [32], and its
deepest point can reach more than 100 m. Previous
studies believed that the Yellow Sea trough was formed
by the flow of the last glacial age and was the main
channel for seawater intrusion in the Holocene [33].
The modern Marine current system in the South Yel-
low Sea mainly includes Yellow Sea warm current and
coastal current. The Yellow Sea cold water mass in the
middle of the South Yellow Sea is a low-energy envi-
ronment, which mainly distributes muddy sediments.
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In the eastern and southwestern parts of the South Yel-
low Sea, strong tidal currents developed and formed
tidal sand ridges [10].

3. MATERIALS AND METHODS

This study comprehensively analyzed studies on
sediment provenance in the South Yellow Sea since
late Quaternary [34—39], combined with zircon U-Pb
dating of multiple borehole sediments and surface sed-
iment samples (Fig. 2 and Table 1), summarized the
sediment provenance changes since 1.0 Ma.

Zircon has strong weathering resistance and is
widely distributed in terrigenous detrital sediments of
various sedimentary environments in rivers, lakes and
deltas. By comparing the age spectrums of multiple
samples and analyzing the tectonic history and sedi-
mentary environment characteristics of the regional
basin, the transport path of sediments can be well
tracked [43—47]. In the past 20 years, with the devel-
opment of in situ analysis of single-particle minerals,
the detrital zircon U-Pb dating method has become
one of the standard methods for sediment provenance
research [48—50]. In this paper, detrital zircon U-Pb
ages of 11 surface samples from the southern and outer
edges of the central muddy area and 5 samples from
SYS90-1 borehole with a bottom age of 1.0 Ma are
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Table 1. The main borehole information is mentioned in this study
Borehole no. Latitude (N) | Longitude (E) Footage, m Depth, m Bottom age, Ma Reference
CSDP-1 34.30° 122.37° 300.1 52.5 3.5 [41]
CSDP-2 34.56° 121.26° 2810 22 5% [10]
NHHO1 35.22° 123.22° 125.6 73 1 [17]
SYS-0701 34.66° 122.45° 70.2 33.0 ~0.16 [42]
SYS-0804 35.27° 121.15° 65.10 38.0 ~0.19 [42]
NTI1 35.43° 123.22° 70 74.6 ~0.09 [34]
NT2 33.47° 122.25° 70.5 354 0.68 [35]
YSC-10 35.97° 122.42° 4.54 56.8 0.009 [36]
YZ08 32.70° 120.88° 131 0 (MIS7) [37]
YNH109 34.47° 123.20° 3.40 73.9 >0.03 [34]
SYS90-1 33.81° 123.73° 90.1 69.3 1.0 This study
Table 2. Samples location and lithology information
Sample no. Location Depth, m Lithology Instructions Reference
SYB80 123°17°46” E 0.20 Silt Surface sample This study
33°27’15” N
SYB86 124°24’17” E 0.20 Silt Surface sample This study
33°05’40” N
SYB198 124°44°02” E 0.20 Silt Surface sample This study
33°05’40” N
SYB256 124°03’48” E 0.20 Silt Surface sample This study
33°05’40” N
G3 127°4505” E 0.20 Silt Surface sample [38]
33°35’05” N
G7 127°39’51” E 0.20 Silt Surface sample [38]
33°15°07” N
GI15 127°00°01” E 0.20 Silt Surface sample [38]
32°45'03” N
G20 125°20°06” E 0.20 Silt Surface sample [38]
32°45°03” N
G30 126°19’51” E 0.20 Silt Surface sample [38]
32°34’57” N
G40 124°39’56” E 0.20 Silt Surface sample [38]
32°14’59” N
G62 125°05’05” E 0.20 Silt Surface sample [38]
31°44’55” N
SYS90-1-B709 123°43’58” E 34.88 Silt Borehole sample This study
33°48’49” N
SYS90-1-C717 123°43’58” E 56.20 Fine sand Borehole sample This study
33°48’49” N
SYS90-1-D235 123°43’58” E 68.88 Silt Borehole sample This study
33°48’49” N
SYS90-1-D275 123°43’58” E 69.68 Silt Borehole sample This study
33°48'49” N
SYS90-1-D945 123°43’58” E 85.66 Silt Borehole sample This study
33°48°49” N
RUSSIAN JOURNAL OF PACIFIC GEOLOGY Vol 18 No. 1 2024



PROVENANCE EVOLUTION AND ITS RESPONSE TO SEA LEVEL CHANGE

analyzed. The studied samples location and lithology
information can be seen in Table 2 and Fig. 2.

Zircon morphology analysis based on CL diagram
and elemental U/Th ratio analysis show that the zir-
con samples are mainly of magmatic origin, which is
suitable for provenance discrimination. The number
of age congruent zircons in the samples is more than
90%, and the age congruent degree of zircons in the
sediments used in this study is more than 90%. Zircon
ages are selected according to the following principles:
For ages <1000 Ma, the calculated values of 2°°Pb/>33U
are selected; for ages >1000 Ma, the calculated values
of 207Pb/2%Pb are selected [51].

4. RESULTS AND DISCUSSION
4.1. Zircon U-Pb Dating of Sediments

The Yellow River and the Yangtze River around the
South Yellow Sea and the Han, Geum and Seomjin
rivers on the Korean Peninsula may provide the main
channels for the transport of seabed sediments. In this
study, these rivers are used as end-members for prove-
nance identification. The Yangtze River is the longest
river in China with a wide zonal span, flowing through
Changdu Block, Songpan-Ganzi fold belt, Qinling-
Dabie tectonic belt, Yangtze Block and Huaxia Block
from west to east [52]. The stratigraphy which it flows
through is complex, distributed from Proterozoic to
Quaternary. It includes a large area of carbonate rocks,
terrigenous clastic rocks and intermediate acid intru-
sive rocks, schist and gneiss, etc. [53]. Based on a large
amount of detrital zircon U-Pb age analysis, it is
found that there are six major age spectrum peaks in
detrital sediments from the Yangtze River: <65, 200—
300, 400—550, 700—1000, 1800—2000 and 2400—
2600 Ma, among which 200—300 and 700—1000 Ma
were the two major age spectrum peaks [54]. As the
second longest river in China, the Yellow River is
famous for its great annual sediment transport. It
flows through several tectonic units, including the
Songpan-Ganzi orogenic belt, Qinling orogenic belt,
Qilian orogenic belt and North China Block [55]. The
detrital zircon U-Pb age statistics show that the detri-
tal sediments of the Yellow River have six major age
spectrum peaks: 200—350, 350—500, 700—1000,
1000—1800, 1800—2000 and 2000—2600 Ma, among
which 200-350, 350—500, 1800—2000 and 2000—
2600 Ma were the four major age spectrum peaks [56,
57]. Zircon U-Pb age spectrum of the main rivers on
the Korean Peninsula show significant differences
between the eastern and western sides of the penin-
sula, ranging from Early Cenozoic to late Archaean,
with Paleozoic to Neoproterozoic zircons dominating
in the west and Paleoproterozoic zircons dominating
in the east [38].

Firstly, the KDE chart of the study samples and the
surrounding river samples was drawn using IsoplotR
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software [58] (Fig. 3), and the provenance of the study
samples was visually interpreted.

According to Vermeesch’s research, the quantita-
tive age similarity analysis of detrital zircons U-Pb
based on multi-dimensional calibration method
(MDS) can effectively capture the age distribution and
has strong practicability [59]. Based on the D value of
Kolmogorov-Smirnoff (K-S) test or the V value of
Kuiper test, the method projects the analysis results in
the form of points into a multidimensional space (two-
dimensional or three-dimensional) by using a specific
algorithm to represent the relative differences between
multiple samples, thus significantly improving the
visualization of the quantitative analysis results of
detrital zircon samples. The difference (8) matrix
between samples is converted by the function finto a
difference matrix represented by linear distance (d),
which is defined as follows for the two samples i and j:

d; = f(3;). (D

In Formula (1), £ (8ij) is a monotone increasing con-
version function, that is, the greater the difference
between samples i and j, the greater the distance
between points representing two samples in multidi-
mensional space. MDS uses these difference matrices
to project the sample points in two-dimensional or
three-dimensional space and draw a graph. In this
paper, IsoplotR software was used to draw the MDS
chart of the study samples and the Yangtze River, Yel-
low River, Han River, Geum River, Seomjin River and
other rivers on the Korean Peninsula (Fig. 3).

4.2. Study on Provenance Tracing of Borehole
Sediments and Surface Sediments

4.2.1. Provenance tracing of borehole sediments
since 1.0 Ma. The CSDP-2 hole in the South Yellow
Sea that penetrated the Quaternary showed that the
first transgression occurred at about 1.66 Ma, and the
South Yellow Sea was dominated by fluvial facies
deposition during the period of 1.66—0.83 Ma, with
three weak transgressions. It was not until 0.83 Ma
that the transgression intensity of the South Yellow
Sea reached the present level due to the further subsid-
ence of the Zhe-Min uplift [10, 41]. However, the
transgression range of the western shelf of the South
Yellow Sea during MIS5 was wider than that of the
present [10].

Detrital zircon U-Pb age statistics were used to
analyze the sediment provenance of SYS90-1 bore-
hole. According to the analysis results, SYS90-1 bore-
hole can be divided into three parts (Fig. 4). The sedi-
ments in the first part from the bottom of the borehole
to the depth of 69.68 m may come from the Yellow
River. According to the results of CSDP-1, CSDP-2
and NHHO1 boreholes, the appearance of Yellow
River sediments in the South Yellow Sea indicates that
transgression occurred. The paleomagnetic results
show that the bottom age of SYS90-1 borehole is

No.1 2024
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about 1.0 Ma, indicating that transgression has
occurred in where SYS90-1 borehole located since
1 Ma. The U-Pb age spectrum of detrital zircon from
the depth 56.20 to 68.88 m in the second part is similar
to that of the Yangtze River sediments, indicating that
the Yangtze River sediments contributed a lot to the
study area during this period. The age of the sediments
from 56.20 to 68.88 m was determined to be 0.59—
0.71 Ma by astronomical dating tuning. Comparing
the curve of global sea level change (Fig. 4), the sedi-
ment of SYS90-1 borehole was mainly controlled by
the Yangtze River as the sea level decreased and the
Yangtze River advanced seaway during this period. In
addition, this period was the Gongzi-Minde intergla-
cial age, which further increased the sediment flux
into the sea. In the third part, from the depth 56.20 m
to the top of the borehole, the sediments mainly came
from the Yellow River. Due to the rising sea level, the
Yellow Sea and Bohai Sea are connected, and the Yel-
low River sediments are widely diffused in the South
Yellow Sea.

4.2.2. Provenance tracing of boreholes sediments
since MIS5 stage. Since MIS3, the sedimentary envi-
ronment of the South Yellow Sea has been basically
consistent with the present sedimentary environment,
and the sediment provenance is mainly controlled by
river evolution, circulation, climate and sea level fluc-
tuation [60].

Lan et al. analyzed rare earth elements and sedi-
ments provenance of borehole NT1 in the central
muddy area of the South Yellow Sea since the MI1S4
stage [34], and found that the Yangtze River played a
major role in the deposition of the central muddy area
of the South Yellow Sea from the early Late Pleisto-
cene (MIS4) to modern times. The Yellow River, on
the other hand, significantly influenced the sedimen-
tation of the South Yellow Sea shelf during the Early
Tamaki glaciation (MIS3 and MIS2) in the late Late
Pleistocene (Fig. 5). According to the sediment prov-
enance study of NT2 bohehole in the southern side of
central muddy area [35], the sediments of the South
Yellow Sea shelf were mainly transported by the Yang-
tze River from the early Late Pleistocene to the mod-
ern era, and the sediments were mainly transported by
the Yellow River during several low sea level periods in
the middle and late Middle Pleistocene (MIS6) and
MIS4-MIS3.

Yao et al. selected 13 samples from YZ08 borehole
in the coastal zone of Jiangsu Province for U-Pb age
spectrum analysis, and found that the provenance of
the YZ08 borehole sediments was mainly affected by
the Yangtze River during MIS5. During the MIS1 and
MIS2, it was under the joint influence of the Yangtze
River and the Yellow River, and dominated by the
Yangtze River. When the Yellow River captured the
Huaihe River into the South Yellow Sea, the percent-
age of Yellow River sediments had increased and sur-
passed the Yangtze River [37]. Based on the clastic
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mineral assemblage characteristics of the SYS-0701
Yangtze sediments and the clay minerals of the SYS-
0804 core sediments of the western shelf of the South
Yellow Sea, Zhang concluded that the sediments in
the western of the South Yellow Sea were mainly from
the Yellow River since the MIS5 [42].

From the results of five boreholes distributed from
the coastal zone to the central muddy area, it can be
found that, with 34.5° N as the boundary, the sedi-
ments in the west of the north side of the boundary
had been mainly supplied by the Yellow River (Ancient
Yellow River) since the late Pleistocene. And in the
east of the north side and in most areas of the south
side of the boundary, the Yellow River had a great
influence on the seabed sediments during the low sea
level period (MIS6, MIS4, MIS2), but the Yangtze
River had a great influence during the high sea level
period (MIS5, MIS3). In the coastal zone of south
side, the sediments mainly came from the Yangtze
River.

4.2.3. Tracer of Holocene and surface sediment
provenance. Previous studies suggested that the Holo-
cene sediments in the central of the South Yellow Sea
were mainly supplied by the Yangtze River and the
Yellow River. Zhang analyzed the geochemical ele-
ments of YNH 109 hole in the central muddy area of
the South Yellow Sea and found that the Holocene
sediments were mainly from the Yangtze River [62].
Based on the changes of environmental magnetic
parameters and the correlation between magnetic sus-
ceptibility and median grain size of the YSC-10 bore-
hole with a bottom age of 9.0 ka [36], speculated that
the sediments from the borehole before 4.8 ka were
mainly from the Yellow River, but the influence of
Yangtze River was relatively enhanced after then. It is
suggested that the magnetic properties of the YSC-10
borehole sediments are dominated by the Yangtze
River sediments related to the Yellow Sea warm cur-
rent since the Middle Holocene.

According to the KDE and MDS charts of all sam-
ples in this study, the zircon U-Pb age spectrum of
surface sediments SYB80 and the borehole sediments
SYS90-1-B709, SYS90-1-D275 and SYS90-1-D945
are similar to that of the Yellow River sediments. The
zircon U-Pb age spectrum of the surface sediments
SYB86, SYB198, SYB256, G20, G30, G40, G62 and
the borehole sediments SYS90-1-C717, SYS90-1-
D235 are similar to that of the Yangtze River sedi-
ments. The U-Pb zircon age spectrum of the surface
sediments G3, G7, and G15 are similar to those of flu-
vial sediments from the Korean Peninsula. So, it can
be inferred that the southern part of the South Yellow
Sea roughly bounded by Jeju Island, the sediments in
the west side are mainly from China, and the sedi-
ments in the east side are mainly from the Korean
Peninsula. This boundary roughly coincides with the
boundary between the silty area and the sandy area on
the eastern South Yellow Sea.
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Fig. 4. The change of provenance of typical boreholes.
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Fig. 5. Schematic diagram of provenance changes in typical Late Pleistocene boreholes (According to reference [61]).

Detrital zircon U-Pb age analysis of surface sedi-
ments in the central muddy area shows that it is a
mixed sedimentary area, with the Yellow River sedi-
ments inner and while the Yangtze River sediments
predominates in the southern muddy area. The main
control boundary between the Yellow River and the
Yangtze River in this region is approximately 33.4° N.

4.3. Response of Provenance Change
to Sea Level Change

Since the Holocene, the sediment provenance in
the central muddy area of South Yellow Sea has been
influenced by many factors, such as sea level change,
ocean circulation, East Asian monsoon, river diver-
sion and estuarine delta formation [63—69]. Among
them, the circulation system dominated by the Yellow
Sea warm current and the coastal current on both sides
controls the transport and deposition of input sedi-
ments from surrounding rivers [70]. The Yellow Sea

RUSSIAN JOURNAL OF PACIFIC GEOLOGY Vol 18

warm current moving northward interacts with the
coastal current moving southward to form a cyclonic
vortex called cold water mass or cold vortex, which has
an obvious control over the formation of the central
muddy area of the South Yellow Sea [71]. Many schol-
ars have studied the age of Yellow Sea warm current [9,
64, 72, 73], and limited the time of its entering the
South Yellow Sea to 6.9—4.3 ka. The study on environ-
mental magnetic parameters of the cylindrical sedi-
ments shows that before the Yellow Sea warm current
entered the South Yellow Sea, the sediments may be
mainly supplied by the Yellow River, and after then the
influence of the Yangtze River sediments increases
relatively [36]. The summer monsoon and the Yellow
Sea warm current are the main driving forces of Yang-
tze River sediments. Both of them act on the diluted
water of the Yangtze River and transport the sediments
to the northwest. The branch rivers of Yangtze River
directly transported material to the central mud area
during the period of low sea level [19].
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The study results of borehole CSDP-1 showed that
large-scale transgression occurred in the South Yellow
Sea from 0.8 Ma, and the marine environment was
close to the present. Before that, the sediments were
mainly imported from the Yangtze River [19]. The
study results of NHHOI hole [17] show that the signal
of Yellow River sediments began to appear after
0.88 Ma, which is consistent with this paper, indicat-
ing that the Yellow River sediments began to affect the
South Yellow Sea roughly between 0.88 and 1.0 Ma.

Based on the results of the depositional environ-
ment comparison and provenance analysis of borehole
CSDP-1, NHHO1 and SYS90-1A (see Fig. 1 for bore-
hole locations), it can be seen that, in the South Yel-
low Sea, due to the subsidence of Zhe-Min Uplift
during about 1.0—0.83 Ma, seawater entered the South
Yellow Sea in the form of “channel” along the Yellow
Sea trough from southeast. The phenomenon of “dif-
ferent phenomena at the same time” exists in different
regions. During the process of seawater entering the
South Yellow Sea, it advances from east to west, reach-
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ing SYS90-1 borehole location first, followed by bore-
holes NHHO1 and CSDP-1 location. Limited by
insufficient sampling interval, the first appearance of
Yellow River sediments in SYS90-1 borehole may be
earlier than the current study results.

The Bohai Sea and the Yellow Sea are the main
gathering areas of Yellow River sediments. The prove-
nance tracer analysis of borehole sediments from the
Bohai Sea and the Yellow Sea has important implica-
tions for the study of sea level change in the two sea
areas. In this study, it is found that the bottom sedi-
ments (about 1.0 Ma) of SYS90-1 borehole was sup-
plied by the Yellow River, indicating that the Yellow
River had already flowed eastward into the sea during
~1.0 Ma, and the transgression scale of Yellow Sea and
Bohai Sea was probably large at that time. Presently,
many scholars have concluded that the Yellow River
entered the sea in the early Pleistocene or earlier [74—
78]. Xiao et al. studied the detrital zircon age spectra
of sediments from three boreholes that penetrated the
late Miocene and found that there were significant
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Fig. 6. Transgression process Map of the South Yellow Sea.
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provenance changes between 1.6 and 1.5 Ma [79],
indicating that the upper and lower reaches of the Yel-
low River were connected, which provided the possi-
bility for the Yellow River sediments to occur about
1.0 Ma in SYS90-1 borehole. Accordingly, the trans-
gression process of the South Yellow Sea can be
inferred (Fig. 6). Before 1.6 Ma, the transgression did
not occur in the South Yellow Sea due to the blockage
of the Zhe-Min Uplift (Fig. 6a). Subsequently, the
Zhe-Min Uplift gradually subsided, and transgression
occurred near the Yellow Sea trough at about 1.0 Ma
(Fig. 6b) and advanced northward. Then, it gradually
advanced westward, reaching the location of NHHO1
and CSDP-1 holes at about 0.88 Ma (Fig. 6¢). The
scope of transgression was basically consistent with
the present since late Pleistocene (Fig. 6d).

5. CONCLUSIONS

Before 1.6 Ma, the transgression did not occur in
the South Yellow Sea due to the blockage of the Zhe-
Min Uplift. During the period from 1.0 to 0.88 Ma, the
Zhe-Min Uplift gradually subsided and the seawater
entered the South Yellow Sea along the Yellow Sea
trough from the southeast to north as a channel, and
there were different phenomena at the same time in
different regions. Since 0.88 Ma, the sea water has
been advancing from east to west. The scope of trans-
gression was basically consistent with the present since
late Pleistocene.

The sediments in the western side of Jeju Island are
mainly from China, and the sediments in the eastern
are mainly from the Korean Peninsula, which roughly
coincides with the boundary between the silty area and
the sandy area on the east of the South Yellow Sea. In
the surface sediments, the boundary between the sed-
iments from Yellow River and the Yangtze River is
approximately 33.4° N.
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