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Interactome of Paraoxonase PON2 Reveals New Pathways 
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Abstract–The interactome of paraoxonase-2 encoded by the PON2 gene was investigated. A cDNA library
was screened using a yeast two-hybrid system to search for new proteins interacting with human PON2. Anal-
ysis of the identified candidates, along with previously published data on interactors obtained by other meth-
ods, indicates the presence of a significant number of indirect interactions between PON2 and EGFR and,
consequently, possible regulation of tumor growth with mutant EGFR involving PON2.
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INTRODUCTION
Historically, term “paraoxonase” was associated

with the ability of mammalian blood plasma to enzy-
matically degrade paraoxon, chlorpyrophos-oxon,
and many other organophosphates [1], and to some
extent also catalyze the hydrolysis of the P-F bond in
sarin and soman [2], providing protection against low
doses of organophosphates, with the level of this pro-
tection varying significantly between individuals [3, 4].
Hydrolysis of diisopropyl f luorophosphate by human
and rabbit blood plasma components was first discov-
ered in 1946 [5], this report can be considered the first
mention of these enzymes, and its dependence on
Ca2+ was established. Currently, the family of mam-
malian paraoxonases includes paraoxonase 1, 2, and 3,
(PON1, PON2, PON3), in humans the genes of all
three enzymes are located in the long arm of the
7th chromosome (7q21.3-q22.1) [6, 7]. The PON1
and PON3 genes are present only in mammals, but a
large number of aquatic species, especially those capa-
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ble of deep diving, have lost the PON1 gene, reflecting
their high sensitivity to some insecticides [8]. Paraox-
onases are proteins with a mass of about 45 kDa, their
three-dimensional structure is stabilized by one disul-
fide bond (one cysteine residue remains free), forms a
six-bladed propeller with key histidine residues and
bound calcium ions in the active center [9]. PON1 and
PON3 are mainly synthesized in the liver and secreted
into the blood [10]. PON2 differs significantly from its
paralogs, it is expressed almost ubiquitously in all tis-
sues, it is an intracellular membrane resident with a
glycosylated [11] C-terminal ectodomain exposed
outside the cell or inside the ER lumen, lysosomes,
mitochondrial intermembrane space, or perinuclear
space [12]. PON2 is not secreted into the blood
plasma, but is secreted into the intestinal lumen, where
it is important for resistance to infections [13, 14]. Para-
oxonases are multifunctional enzymes [11, 15]: PON1
and PON3 are responsible for blood plasma paraoxo-
nase and low specificity aryl esterase and lactonase
activities, while PON2 in terms of substrate specificity
should not be termed a paraoxonase [16]. In plasma,
PON1 functions as part of high density lipoproteins,
HDL, and the main function of the enzyme is consid-
ered to be lipolactonase activity, which helps to neu-
tralize moderately oxidized lipoprotein [17], appar-
ently by detaching free hydroxylated fatty acids
through cyclization and opening of the lactones. In
general, plasma paraoxonases have a rather broad
specificity, hydrolyzing various lactones and acyclic
esters (such as naphthyl acetate) [18].

Paraoxonases have notable potential in the fight
against cardiovascular disease, PON1 gene knockout
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leads to the development of severe atherosclerosis [19].
Since PON1 is present in HDL, it protects low density
lipoproteins, LDL, against oxidative stress, reducing
formation of foam cells from macrophages. The same
is true for PON2—knockout of the PON2 gene has
similar physiological consequences [20], and for some
time the main function of PON2 was considered to be
antiatherogenic [28]. But in reality, PON2 poorly
hydrolyzes most PON1 and PON3 substrates, but, in
comparison to them, PON2 is thought to be able to
hydrolyze quite well such substances as N-acylhomo-
serine lactone (N-AHL) [16], which, like pyocyanin,
is a virulence factor of Pseudomonas aeruginosa (here-
inafter, PAE). PON2 is most effective against N-AHL
with a long chain (e.g., N-(3-oxodecanoyl)-homoser-
ine lactone, 3OC12-HSL). Therefore, PON2 activity
is thought to play a major role in inhibiting the quo-
rum sensing of opportunistic bacteria, particularly
PAE, which is extremely common in hospital-
acquired infections. Knockout of the PON2 gene
causes a decrease in resistance to PAE [21]. Moreover,
PON2 and PON3 are important parts of innate
immunity to PAE [22], exhibiting antioxidant and
anti-inflammatory functions. Overexpression of
PON2 and PON3 can prevent PAE pyocyanin acti-
vated free radical formation, activation of the NF-κB-
signaling pathway, and increased IL-8 secretion,
thereby reducing oxidative stress and inflammation
[22]. PAE, in turn, tends to suppress the enzymatic
activity of PON2 by releasing unidentified inhibitors
[23]. Paradoxically, upon PAE infection and exposure
to 3OC12-HSL, PON2 may serve a pro-apoptotic
function that is associated with unidentified protein-
protein interactions [24]. It is likely that in the absence
of the formation of fully functioning complexes,
PON2 becomes an easy target for inhibitors of bacte-
rial nature, this inevitably leads to a more aggressive
behavior of PAE and increased sensitivity of host cells
to pyocyanin-type toxins, whose secretion is activated
by quorum sensing.

Interestingly, PON2 expression is elevated in dis-
eases of viral etiology, such as HIV infection [25, 26],
but it is unknown whether this reflects activation of
some resistance mechanism or, conversely, contrib-
utes to pathology. PON2 reduces caspase activation-
induced endoplasmic reticulum stress [12].

The multi-functionality of PON2 is also illustrated
by the disruption of insulin signaling when this gene is
knocked out [27]. An extremely important feature of
PON2—in contrast to the secreted PON1 and PON3
working in HDL—is that it performs “antioxidant”
functions in the plasma membrane [28]. The protec-
tive function of PON2 under oxidative stress is also
evident in the brain, with some polymorphisms show-
ing an association with neurosensory hearing loss [29].
Here we would like to note that hearing impairment in
children is also found in patients with a disrupted
ATP8B1 gene (Byler disease) that, according to our
data, is a protein partner of PON2 [30]. Unfortu-
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nately, the protective function of PON can also have
negative consequences in certain cases, for example,
in some cancer cell lines overexpression of PON2
increases cell resistance to chemotherapeutic agents
and decreases tumor cell apoptosis [31]. Also, PON2
levels are elevated in vivo and in vitro in head and neck
cancers, and the cells acquire greater resistance to
radiotherapy [32]. In general, high PON2 levels in
many cancers is a negative factor that decreases patient
survival [33]. Importantly, there is evidence that the
“antioxidant” function of PON2 may be unrelated to
its lactonase activity [34]. Numerous conflicting data
in favor of one or the other activity led us to continua-
tion in PON2 interactome studies. The aim of our
study was to find PON2 partner proteins, the identifi-
cation of which will expand our understanding of the
functional significance of this protein and possibly
reveal new intracellular signaling pathways underlying
pathophysiological processes in cancer.

MATERIALS AND METHODS
Yeast two-hybrid system. Approaches similar to

those previously published [35] were used. The search
for PON2 interactors was performed with the Match-
maker® kit (Clontech, USA) and a cDNA library of
human lung tissue. Two PON2 variants were cloned
into the pGBKT7 plasmid (Clontech, USA): the
CRA_a isoform (GenBank: EAW76763.1) with the
leader sequence and another isoform without it
(NCBI Reference Sequence: NM_001018161.2). The
plasmids were transformed into yeast strain Y2HGold
(“Clontech,” USA) by the lithium-acetate method.
Then resulting clones were hybridized with Y187 strain
carrying the cDNA library [35]. The first stage of
selection was performed by growing on selective
medium deficient in histidine, leucine, and trypto-
phan, i.e., three amino acids, which is important both
to prevent plasmid loss and to induce a selective
marker in the presence of interaction of the protein
encoded by the cDNA of the screened library, i.e.,
with PON2. The grown colonies were then transferred
to highly selective media providing a more stringent
selection. Such regrowth was repeated several times to
reveal any heterogeneity of the library and promote
plasmid segregation. Plasmids were isolated from pos-
itive yeast clones and transformed into E. coli cells,
and then purified and sequenced. The resulting
sequences were used to identify the clones by analyz-
ing sequence databases with BLAST. Several false-
positive clones were then screened out by control
cotransfection with plasmids carrying a control insert
instead of PON2.

Bioinformatic analysis of interactomes. BioGRID
(https://thebiogrid.org/), IntAct (https://www.ebi.ac.
uk/intact/home), STRING (https://string-db.org/),
GeneMania (https://genemania.org/), InBio Dis-
cover (https://inbio-discover.com/), HitPredict (http://
www.hitpredict.org/) databases were used both through
 BIOCHEMISTRY AND BIOPHYSICS  Vol. 508  2023
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their websites and through querying by Cytoscape 3.9.1.
Interactors clusters were searched using the MCODE
module.

RESULTS AND DISCUSSION

We previously published the identification of new
PON2 interacting proteins in A549 lung cancer cells
using PON2 carrying a Halo-tag affinity tag at its
C-terminus, followed by the identification of the
PON2-bound proteins using LC-MS/MS [33]. How-
ever, the resulting list of associated proteins was appar-
ently enriched with a large number of proteins that do
not interact directly with PON2. Therefore, here we
screened the cDNA library using a yeast two-hybrid
system against two PON2 variants (with and without
the leader sequence). The screening was successful
only in the case of the full-length PON2. We identified
several new partners: one clone showed interaction
with decorin (DCN) isoform CRA_g (GenBank:
EAW97458.1), two clones coding for integral mem-
brane protein 2A (ITM2A, AAH40437.1), one clone
with secreted frizzled-related protein 4 (SFRP4,
NM_003014.4), acetyl-CoA acyltransferase (ACAA2,
NM_006111.3) was detected in three clones, two
clones with CFAP53/CCDC11 (NP_659457.2), and
two clones of isoform 4 of the regulatory subunit 2 of
protein phosphatase (PPP4R2, NP_001304956.1).

Unlike other PONs, the open reading frame of
human and other primate PON2 have an N-terminal
extension with no apparent homology to any other
known sequences. It is possible that this peptide con-
tributes to the formation of the PON2-specific inter-
actome (since other PONs lack this cytoplasmic por-
tion altogether).

In combination with the previously identified
interaction of PON2 with ATP8B1, as well as all other
interactors known from the literature and deposited
into human protein interactome databases, a new ver-
sion of the human PON2 interactome was con-
structed. Most of the data on PON2 interactions were
obtained by high-throughput methods such as affinity
capture or proximal biotin ligation followed by mass
spectrometry. Both numerous high-throughput data
(e.g., [36]) and our earlier data for PON2 [33] are
characterized by a vast number of proteins identified as
components of large and complex communities or
even simply located in the same cellular compartment,
while those that directly interact with the protein of
interest remain unknown. In contrast, the yeast two-
hybrid system is focused on identification of specifi-
cally binary interactions, but because of its unnatural
yeast context it is also prone to interaction signals that
may be either false positives or—to an even greater
extent—false negatives. Therefore, any interactions
need careful double-checking.

Unfortunately, only PARK7 (another name is DJ-1)
[37] as well as LRIG1,2 [38] should currently be con-
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sidered high-confidence PON2 interactions among
human proteins. PON2 interaction with EGFR may
also be regarded as a confirmed one, since it was found
in several high-throughput studies (for example, [36]),
but this may reflect the larger number of studies on
EGFR, which plays an important role in oncogenesis,
compared to any average protein. In total, there are
428 candidate proteins that may be PON2 interactors,
but almost all of them appeared to have negligible con-
nectivity with high-confidence interactors, with the
exception of EGFR. Therefore, it should be noted that
the PON2 interactome may be significantly expanded
in the future; at present, however, we limited ourselves
to creating, for illustrative purposes, a network that
includes: a) high-confidence interactions with
PARK7 and LRIG1,2; b) interactors that we identified
with the help of two-hybrid screening; c) protein hubs
that allow us to assess the interconnection of groups
“a” and “b” with each other in the global interactome
(Fig. 1).

It is important to note that in both cases EGFR
becomes included in the PON2 interactome and this
may be an indication of the special role of PON2 spe-
cifically in EGFR mutated cancer cells. It cannot be
ruled out that PON2 interacts with EGFR directly.
We should also briefly review the state of knowledge
on these new candidates for PON2 interactors.
ITM2A, a type 2 integral membrane protein, is a
tumor suppressor and its loss increases the aggressive-
ness of ovarian cancer [39]. ACAA2, a mitochondrial
3-ketoacyl-CoA-thiolase, may play a special role in
IDH-mutant gliomas [40]. PPP4R2 (protein phos-
phatase 4 regulatory subunit 2) is a part of DNA repair
complex and plays a role in regulation of sensitivity to
platinum drugs [41]. Decorin (DCN) is an important
antitumor component of extracellular matrix [42],
produced by fibroblasts, whose interaction with
EGFR is well studied, moreover, decorin acts as a
pan-receptor inhibitor of tyrosine kinases, binding
also to HER2, HGFR/Met, VEGFR2, TLR and
IGFR [43]. SFRP4 is a secreted protein associated
with some aggressive cancers, in case of glioblastoma
its action can be proapoptotic [44], it is probably an
oncosuppressor, and its mutations reverse this function,
which is especially evident in ovarian cancer [45, 46].

Experimentally confirmed is the interaction of
PON2 with LRIG1 and LRIG2 proteins, that are
ligands of receptor tyrosine kinases and are involved in
tumor development. It turned out that through inter-
action with LRIG1, PON2 affects the expression of
another protein, PDGFRA, that is involved in cell
proliferation [38]. The interaction of PON2 with
PARK7/DJ-1 possibly plays a role in the pathogenesis
of some types of Parkinson’s disease, for example, in
1-methyl-4-phenylpyridinium poisoning [37], but
PARK7/DJ-1 protein also plays an important role in
the resistance of many cancer cell types to antitumor
treatments [47].
8  2023
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Fig. 1. PON2 Interactome. High-confidence interactions are marked by bold lines. The interactions that we identified with the
help of the two-hybrid system are shown by the purple dotted lines.
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It can be assumed that both subcellular localization
and the interactome of PON2 may differ in cells of
various tissues depending on their physiological state.
For example, it was found that PON2 interacts with
several human immunodeficiency virus-1 and SARS-
CoV-2 proteins [48, 49]. Obviously, the interactome
can undergo significant perturbations, especially in
diverse pathological processes.

Our results, along with other data, point to a signif-
icant role of PON2 and its interactors in the aggres-
siveness of many cancers and their resistance to thera-
peutic interventions. The diversity of PON2 interac-
tors may also be regarded as evidence for the putative
chaperoning function of PON2 as a turnover regulator
for many other functionally important proteins [50].
To confirm the role of the putative interactions of
PON2 with the identified proteins (decorin, EGFR,
etc.) it is necessary to analyze these interactions with
both wild-type proteins and mutant variants known in
cancer cells.
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