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Abstract—The presence of higher-index saddles on a multidimensional potential energy surface
is usually assumed to be of little significance in chemical reaction dynamics. Such a viewpoint
requires careful reconsideration, thanks to elegant experiments and novel theoretical approaches
that have come about in recent years. In this work, we perform a detailed classical and quantum
dynamical study of a model two-degree-of-freedom Hamiltonian, which captures the essence of
the debate regarding the dominance of a concerted or a stepwise reaction mechanism. We show
that the ultrafast shift of the mechanism from a concerted to a stepwise one is essentially a
classical dynamical effect. In addition, due to the classical phase space being a mixture of regular
and chaotic dynamics, it is possible to have a rich variety of dynamical behavior, including a
Murrell – Laidler type mechanism, even at energies sufficiently above that of the index-2 saddle.
We rationalize the dynamical results using an explicit construction of the classical invariant
manifolds in the phase space.
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1. INTRODUCTION

Transition state theory (TST) is a cornerstone for reaction dynamics [1]. The simple idea of
calculating the rate of a reaction as flux through a “bottleneck” region (TS) has proved to be of
immense utility in chemistry for nearly a century now. The notion of associating the TS with a
saddle point on the multidimensional potential energy surface (PES) has led to the development
of several powerful algorithms to determine the so-called intrinsic reaction coordinate (IRC) or
minimum energy path (MEP) and accurate ab initio force fields in the vicinity of the various TS.
Although the IRCs and their connectivity across the high-dimensional PES are useful starting
points for analyzing the reactions [2], the fact remains that MEPs and IRCs are nondynamical.
Consequently, depending on the energy and other parameters of interest, significant deviations from
IRCs may be observed [3]. There is little doubt that the true TS is to be found in the full phase
space of the system. This dynamical “Wignerian” view was brought out beautifully in the early
work of Pollak and Pechukas [4, 5] and more recently generalized to higher degrees of freedom by
Wiggins and coworkers [6, 7].

Although traditionally, TS have been associated with index-1 saddles on the PES, in systems
with a large number of degrees of freedom, the true (dynamical) TS rarely coincides with the saddle
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points on the PES. Moreover, in such multidimensional systems, there are higher-index saddles on
the PES that are expected to be dynamically relevant for reactions. Indeed, reactions at sufficiently
high energies can occur via pathways that involve both the index-1 saddles and the higher-index
saddles. Competition between the different pathways, apart from complicating the mechanistic
understanding, can lead to unexpected products. For example, in a recent experimental study, Lu
et al. found that a short and intense extreme ultraviolet (XUV) excited CO2 molecule can result
in the production of O2 molecules [8]. Similarly, the ring opening reaction of cyclobutene to 1, 3-
butadiene can occur via a disrotatory pathway, as opposed to the conrotatory pathway predicted
based on the Woodward –Hoffman rules, due to the involvement of an index-2 saddle [9, 10]. It is
crucial to note here that the implication of higher-index saddles to reactivity does not necessarily
come under the ambit of the Murrell – Laidler theorem [11–13] or the McIver – Stanton rules [14, 15].
The reason is that these rules are based on the IRC perspective, and hence nondynamical. Note,
however, that even within the IRC perspective, it is possible for an index-1 saddle to be linked
to a higher-index saddle which can then lead to multiple products. An example of this comes
from the recent work of Harabuchi et al. [16] resulting in the so-called nontotally symmetric
trifurcation of a reaction pathway. Similarly, modulating reactivity using external forces need not
be constrained by IRC-based rules and can involve pathways that utilize higher-index saddles.
Thus, in mechanochemistry [17–21], the energetics of the various index saddles alone is no longer
a useful criterion and it is quite feasible for the “forced” dynamics to prefer pathways that explore
the various high-index saddle regions.

Recently there have been several studies that focus on the dynamical aspects of the higher-index
saddles. A key motivation is to generalize the dynamical perspective of TST to construct locally
recrossing free dividing surfaces. Efforts along these lines have been made by Collins et al. on a
model two-degree-of-freedom potential [22], by Haller et al. on the double ionization of helium in an

external electric field [23], and by Nagahata et al. on the proton exchange reaction involving the H+
5

moiety [24], the last two examples being three-degree-of-freedom systems. We note that typically
the higher-index saddles occur along with the usual index-1 saddles due to topological constraints
on the potential energy surface. An early work by Mann and Hase highlighted the role of dynamics
in the electrocyclic ring opening reaction of cyclopropane radical to form the allyl radical [25].
More recently, Pradhan and Lourderaj performed extensive ab initio dynamics calculations to
emphasize the key role of an index-2 saddle point in the denitrogenation reaction of 1-pyrazoline [26].
Interestingly, in the study by Mann and Hase, the trajectories were not propagated for a sufficiently
long time to ascertain if the reaction was indeed statistical or not. On the other hand, Pradhan and
Lourderaj did a much more extensive computation and established significant deviations from the
minimum energy path (MEP). They suggested the possibility of slow intramolecular vibrational
energy redistribution (IVR) leading to nonstatistical dynamics. One phenomenon where the issue of
competing pathways, possibly mediated by higher-index saddles, continues to be of interest is that
of intramolecular double proton transfer (DPT). Several studies have addressed various aspects of
the mechanism of the DPT phenomenon in a variety of molecular systems. Of particular interest
in such studies is the issue of whether the mechanism of DPT is concerted or stepwise. There are
indications that the mechanism is sensitive to a variety of factors, including temperature and the
extent of coupling between the two local hydrogen stretching modes [27]. Suggestions for the two
hydrogens to be quantum mechanically entangled [28, 29] and the role of nuclear quantum effects
at temperatures below 100 K [30] have been made in porphycene and other structurally related
molecules. Careful and rather detailed NMR experiments on DPT in the azophenine led Rumpel
and Limbach [31] to observe the breakdown of the so-called “rule of geometric mean”. According
to this rule, the rate constants kHH, kHD, and kDD for DPT reaction with single and double isotopic
substitutions are expected to obey the relation

kHD =
√

kHHkDD =⇒ kHH

kHD
=

kHD

kDD
. (1.1)

The significant breakdown of the above relation, observed in azophenine and other systems [32],
implies that the mechanism is stepwise rather than concerted. An elegant analysis of a simple model
for the isotope effect in DPT can be found in the article by Albery [33]. However, the fact that the
relation (1.1) is a consequence of equilibrium and traditional TST-based arguments implies that
dynamical effects are expected to be important in these classes of molecules.
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Despite many studies, there are still doubts as to whether the mechanism of DPT can be
purely concerted or stepwise. There are hints that the dynamics underlying DPT reactions is fairly
complicated and quite distinct from single proton transfer reactions. For instance, Accardi et al.,
in their quantum wavepacket dynamical studies on a model two-degree-of-freedom system, showed
that mechanisms can switch on ultrafast timescales [34]. Dynamical studies in full dimensionality,
both ab initio [35] and Car –Parinello [36], also indicate the complexity of the reaction mechanism.
Indeed, in the context of Diels-Alder reactions, Houk and coworkers [37] have argued that the
mechanism can be described as “dynamically concerted” since the time lag between the transfer
of the two protons is less than the characteristic vibrational period. The wavepacket dynamical
results, according to Accardi et al., is therefore possibly a “quantization” of the notion of classical
synchronicity proposed by Houk and coworker. We also refer the reader to the work of Takeuchi and
Tahara [38] for an illuminating discussion of the concerted versus stepwise debate in the context of
DPT in the 7-azaindole dimer.

From the above discussion, it is clear that the mechanistic implications of higher-index saddles
even in gas phase reactions require careful dynamical considerations. In particular, the nature of
IVR and consequently the possibility of the emergence of new pathways and mechanisms due to
the coupling between modes deserves close attention. An important issue is whether the classically
predicted dynamical pathways and preferences will be respected by the quantum dynamics. For
instance, can quantum tunneling lead to the switching of a stepwise isomerization pathway to a
concerted one? Moreover, to date, the signatures of the index-2 saddles on the quantum eigenstates
and dynamics have not been explained clearly. We note that, although the work of Accardi et al. [34]
is suggestive of a quantum manifestation of the classical synchronicity, a confirmation by performing
full-dimensional quantum dynamics on the molecules studied by Houk and coworkers [37] is not
practical yet. In this article, we perform extensive classical and quantum dynamical studies on the
model system proposed by Collins et al. [22], which is closely related to the earlier models of DPT,
to address the above issues. We demonstrate a striking classical-quantum dynamical correspondence
and argue that much of the mechanism of DPT at high energies can be understood from a classical
phase space perspective.

In Section 2, we describe the model Hamiltonian for the correlated proton transfer reaction in a
dimensional form. In Section 3, we study the dynamics of the quantum wavepackets and in Section 4,
we study the classical dynamics in the context of the switch between the stepwise and concerted
mechanisms. We also illustrate the presence of the dynamical Murrell – Laidler mechanism which
ignores the concerted mechanism. In Section 5, we present our analysis of the mechanism switch
using the phase space structures that underlie the quantum and classical dynamics. In Section 6,
we conclude with our summary and outlook on future work.

2. MODEL HAMILTONIAN

To study the dynamics in the proximity of the index-2 saddle, we consider a classical two-degree-
of-freedom Hamiltonian of the form

H(P,Q) = H0(P,Q) + Vcoup(Q), (2.1)

where (P,Q) are momentum and position variables. The zeroth-order Hamiltonian term is given
by

H0(P,Q) =
∑

j=1,2

[
1

2mH
P 2
j + Vj(Qj)

]
(2.2)

with the symmetric double-well potential term

Vj(Qj) = −ajQ
2
j + bjQ

4
j . (2.3)

The coupling term

Vcoup(Q) = γQ2
1Q

2
2 (2.4)

preserves the symmetry and γ is the coupling strength.
The model Hamiltonian in Eq. (2.1) has been used to describe the double proton transfer

(DPT) in a number of studies. In particular, the coordinates (Q1, Q2) are essentially the collective
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coordinates introduced in a detailed study of DPT by Smedarchina et al. [39, 40]. The mode-mode
coupling in Eq. (2.4) may appear to be a special choice. However, as elucidated by Smedarchina et

al., the coupling term γQ2
1Q

2
2 in the collective coordinates accounts for couplings up to fourth order

in the original local proton transfer coordinates. This can be seen by transforming the potential
in terms of the local proton transfer coordinates q1,2 ≡ (Q1 ±Q2)/2, resulting in the potential
V (q) = V0(q) + Vcoup(q) with the zeroth-order part

V0(q) = −
(
a1 + a2

4

)
(q21 + q22) +

(
b1 + b2
16

)
(q41 + q42) (2.5)

and the coupling term

Vcoup(q) = −
(
a1 + a2

2

)
q1q2 +

(
b1 − b2

4

)
(q31q2 + q1q

3
2) +

(
3(b1 + b2)

8

)
q21q

2
2. (2.6)

Thus, the potential in the collective coordinates V (Q) with a single coupling term γQ2
1Q

2
2 accounts

for the various couplings in V (q). However, note that in the context of DPT, the last term
in Eq. (2.6) is not allowed since symmetry considerations demand that the couplings must be
symmetric in the two coordinates and sensitive to their signs, leading to the symmetry between Q1
and Q2 to be broken. In the present study, the symmetry between Q1 and Q2 is broken due to the
unequal choice of the parameters corresponding to the two double well potentials (cf. Table 1) in
V0(Q). An additional difference between the models has to do with the fact that in our case, all four
minima are degenerate, while the Smedarchina model has two pairs of isoenergetic minima. In any
case, our aim here is to study the correspondence between classical and quantum dynamics of the
Hamiltonian model in Eq. (2.1) without necessarily being restricted to a DPT process. Nevertheless,
as seen below, our model shares many of the dynamical features observed in the earlier studies on
DPT.

Fig. 1. Contour plot of the model potential energy surface. Blue, black, and red points denote the positions
of the index-1 saddles of lower energy, index-1 saddles of higher energy, and the index-2 saddle, respectively.
Symbolic descriptions of the minima refer to the sign of the (Q1, Q2) coordinates, respectively.

The numerical values of potential parameters used in this study are listed in Table 1. The values
of masses are kept equal to the mass mH of a hydrogen atom. Figure 1 represents a contour plot of
the potential energy surface (PES). The various critical points of the PES can be summarized as
follows:
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1) Four isoenergetic minima (wells) located at

(Q1, Q2) =

(

±

√
2a1b2 − γa2
4b1b2 − γ2

,±

√
2a2b1 − γa1
4b1b2 − γ2

)

. (2.7)

Following Collins et al., the minima are denoted as (−−), (+−), (++), and (−+) with
energy VM . In this work, we consider the (−−) well to be the reactant (R) and the (++) well
as the product (P). However, given that the minima are isoenergetic, one can also choose
any pair of minima as R and P.

2) The minima are connected by four index-1 saddles, of which the two saddles denoted SP
(l)
1

located at

(Q1, Q2) =

(
±
√

a1
2b1

, 0

)
(2.8)

have energy V †
1 lower than the ones with energy V †

2 located at

(Q1, Q2) =

(
0,±

√
a2
2b2

)
(2.9)

and denoted by SP
(h)
1 .

3) An index-2 saddle denoted SP2 with energy V ‡ = 0 at (Q1, Q2) = (0, 0).

The position of the various critical points of the PES, along with their energies for the specific
choice of parameters in Table 1, are given in Table 2. For future reference and for an idea of the
timescales involved, we note that an approximate harmonic approximation around the (−−) well
yields the vibrational time periods of about 0.06 ps (≡ 6× 10−14 s ≡ 60 fs) and 0.08 ps for the Q1

and Q2 modes, respectively.

Table 1. Parameters used in the potential of the system

Parameter Value (in au)

a1 3.0× 10−3

b1 1.0× 10−4

a2 1.8× 10−3

b2 5.0× 10−5

γ 1.0× 10−5

mH 1837.151

Table 2. Critical points and the corresponding energies (in atomic units (au)) for the model potential

Critical point Q1 Q2 Energy

Minima ±3.764 ±4.072 −0.0362

Index-1 saddle ±3.873 0.0 −0.0225

Index-1 saddle 0.0 ±4.242 −0.0162

Index-2 saddle 0.0 0.0 0.0
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3. QUANTUM WAVEPACKET DYNAMICS

We begin our dynamical studies by highlighting the key features of the quantum dynamics
at energies above the index-2 saddle energy. Note that this is motivated by the several quantum
dynamical studies that have been done earlier on similar model Hamiltonians in the context of
DPT. Our purpose here is to point out the subtleties involved, as emphasized by Accardi et al. [34]
and others [41], in deciphering the reaction mechanism.

3.1. Choosing the Initial State and Time Propagation

The dynamics of the system can be investigated in terms of propagating several types of
initial quantum states. However, since our interest lies in exploring the correspondence between
the classical and quantum dynamics, we focus here on quantum initial states that are minimum
uncertainty wavepackets. Thus, we choose normalized initial states of the form

Ψ(Q, 0) =
∏

j=1,2

Nj exp

[
−βj(Qj −Qj0)

2 +
i

�
Pj0(Qj −Qj0)

]
(3.1)

corresponding to a wavepacket centered at (P0,Q0) with the normalization factor Nj =

(2Re(βj)/π)
1/4. For the wavepacket above, the position and momentum uncertainties ΔQj and

ΔPj are equal to 1/(2
√

βj) and �
√

βj , respectively. Thus, ΔQjΔPj = �/2, corresponding to a
minimum uncertainty state. In what follows, we set the squeezing parameter βj = 1.0, for j = 1, 2
and vary the �. The mean energy associated with the initial state is evaluated as

Ē = 〈Ψ|Ĥ|Ψ〉 =
∑

α

|CαΨ|2Eα, (3.2)

where CαΨ ≡ 〈α|Ψ〉 with |α〉 and Eα are the quantum eigenstates and eigenvalues, respectively, of

the full Hamiltonian Ĥ.

The time-dependent Schrödinger equation for a specific initial quantum state Ψ(Q, 0)

i�
∂Ψ(Q, t)

∂t
=

⎡

⎣
∑

j=1,2

(

− �
2

2mH

∂2

∂Q2
j

+ Vj(Qj)

)

+ γQ2
1Q

2
2

⎤

⎦Ψ(Q, t) (3.3)

≡ [K̂ + V̂ ]Ψ(Q, t) (3.4)

is solved numerically using the split operator technique [42, 43]. As this is a well-known technique,

we provide a brief description of the method. In Eq. (3.4), K̂ and V̂ represent the kinetic and
potential operators, respectively. Given a specific initial quantum state Ψ(Q, 0), the quantum state

Ψ(Q, t) at time t can be obtained using the unitary time evolution operator Û(t)

Ψ(Q, t) = Û(t)Ψ(Q, 0) ≡ exp[−iĤt/�]Ψ(Q, 0). (3.5)

We can represent Û(t) as a product of n consecutive time evolution operators over short time
intervals Δt = t/n:

Û(t) = e−iĤΔt/�e−iĤΔt/� . . . e−iĤΔt/�
︸ ︷︷ ︸

n times

. (3.6)

We note that, due to the noncommutativity of K̂ and V̂ , we have

e−i[K̂+V̂ ]Δt/� ≈ e−iK̂Δt/�e−iV̂Δt/� +O(Δt2). (3.7)

The basic idea of the split operator approach is to introduce a symmetrized product of K̂ and V̂

e−iĤΔt/� ≈ e−iV̂Δt/2�e−iK̂Δt/�e−iV̂Δt/2� +O(Δt3) (3.8)
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leading to reduced error, and hence faster time evolution. By using Eq. (3.8) in Eq. (3.6), we obtain

e−iĤt/� = e−iV̂Δt/2� e−iK̂Δt/�e−iV̂Δt/�e−iK̂Δt/�e−iV̂Δt/� . . . e−iK̂Δt/�e−iV̂Δt/�
︸ ︷︷ ︸

n-1 times

e−iK̂Δt/�e−iV̂Δt/2�.

(3.9)

We note that the matrix for V̂ is diagonal in the position representation, whereas the matrix for K̂
is diagonal in the momentum representation. Consequently, in order to determine the time-evolved
state Ψ(Q, t), we use the fast Fourier transform and its inverse to efficiently propagate the initial
state. Although it is possible to use more sophisticated splitting algorithms [44–46], Eq. (3.8) is
sufficient for the results reported in this study due to the ultrafast nature of the reaction dynamics.
For the calculations reported here, we chose a 512 × 512 spatial grid. The range for both sets of
the spatial and momentum coordinates is [−8.0, 8.0] and [−20.0, 20.0].

3.2. Switch from Concerted to Nonconcerted Mechanism

Following Accardi et al. [34], we define different domains D in the configuration space. As shown
in Fig. 2c, we define five domains that include the reactant (−−), product (++), “intermediates”
(+−)/(−+), and the index-2 saddle regions. As noted earlier, the precise geometric definitions of
the domains are not particularly important, and the resulting domain probabilities

PD(t) ≡
∫

D
dQ1dQ2|Ψ(Q, t)|2 (3.10)

are not significantly different for alternative definitions of D. In particular, the mechanistic
information is robust to slight changes in the definitions of the domains D.

Fig. 2. (b) Quantum domain probabilities (� = 1.0) as a function of time for a wavepacket with mean
energy of ≈ 0.044 au. Reactant well (−−) (black), product well (++) (red), index-2 region, defined by
the square region in (c) (magenta filled curve), the (+−) well (green), and the (−+) well (blue). Note
the switch in the mechanism from a concerted to a sequential one at t ∼ 70 fs (≡ 0.07 ps). (a) The
corresponding classical probabilities, showing a similar mechanism switch. (c) Definition of the various domains
in the configuration space (Q1, Q2), adapted [34] from an earlier work. The center of the wavepacket is at
(Q1, P1, Q2, P2) = (−2.50, 9.57,−4.37, 14.19).

In Fig. 2b, we show the results for the quantum domain probabilities as a function of time
for a wavepacket initiated at (Q1, Q2) with a mean energy of Ewp ≈ 0.044 au. Two observations
are worth noting. First, the reaction is ultrafast and the product regions are populated within
a timescale of about 50 fs, which is of the order of a harmonic vibration period in the reactant
well; a similar ultrashort timescale is observed for the average residence time in the intermediate
and index-2 domains. Second, as noted by Accardi et al. [34], the first forward reaction is clearly
concerted since the maximum probability is associated with the index-2 saddle region. However, at
later times (∼ 150 fs), the forward reaction is mostly due to a sequential mechanism. In fact, even
the first backward reaction from products to reactants is nonconcerted. Clearly, Fig. 2b indicates
that the role of the index-2 saddle for the overall reaction is gradually reduced with time.
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Given the fact that the mean energy of the initial wavepacket is much above the index-2 saddle
energy, the switching of the reaction mechanism from a concerted to a sequential one is perhaps
puzzling. We note here that due to the ultrashort residence times in the (+−)/(−+) and index-2
domains, it has been argued that the mechanism can be considered as effectively synchronous.
Nevertheless, rationalizing the observations in Fig. 2b is crucial for two main reasons. Firstly, such
an insight may offer interesting clues for implementing rational control strategies that exploit the
presence of higher-index saddles. Secondly, the dynamical switching of the mechanism might pose
a challenge for TST-based rate computations in terms of fluxes across appropriately defined locally
recrossing free dividing surfaces.

Fig. 3. Configuration space snapshots of the time evolving wavepacket corresponding to Fig. 2b. The top
column left panel corresponds to time t = 0 ps and the right column bottom panel corresponds to t = 0.168
ps. The rest of the panels are shown at intervals of 0.012 ps.

In order to understand the mechanism switch, in Fig. 3 we show the time evolution of the
wavepacket, which results in the domain probabilities shown in Fig. 2b. Starting from the initial
time, the evolution is shown in time steps of 0.012 ps until a final time of 0.168 ps. Note that this
time range, as evident from Fig. 2b, covers the first forward and backward reaction and the second
forward reaction. The various aspects of the time evolution, from the initial flux across the index-2
region to the subsequent wavepacket dispersion and relief reflections leading to the domain densities
in Fig. 2b, are in agreement with the earlier studies. Consequently, as analyzed and argued earlier
in detail in [34], the switch from a concerted to the stepwise mechanism is due to the dispersion
and the subsequent relief reflections of the wavepacket from the steep repulsive wall of the PES in
the product domain into the (−+)/(+−) domains.

3.3. Is the Mechanism Switch a Quantum Effect?

Given the results in Fig. 2b and the wavepacket dynamics shown in Fig. 3, along with the
rationale provided above, it is reasonable to expect that the switching of the mechanism is of
quantum origins. However, confirming such expectations requires investigating the corresponding
classical dynamics. Thus, we compute the classical analog of the domain probabilities in Eq. (3.10)
as

P cm
D (t) =

∫

D
dQ

∫
dP ρcm(Q,P; t) (3.11)
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Fig. 4. Initial quantum wavepacket with mean energy Ē ≈ 0.045 au exhibiting Murrell – Laidler type
dynamics. The associated domain probabilities (a) classical and (b) quantum are shown. Configuration
space snapshots of the wavepacket at indicated times are also shown. For reference, the classical trajectory
corresponding to the center of the wavepacket is shown as a bold black line. The center of the wavepacket is
at (Q1, P1, Q2, P2) = (−3.50,−12.07,−3.77, 12.97).

with the classical phase space density computed based on the formula [47]

ρcm(Q,P; t) =

∫
dQ′dP′δ[Q −Qt(Q

′,P′)]δ[P −Pt(Q
′,P′)]ρcm(Q′,P′; 0). (3.12)

In the above formal solution of the Liouville equation, (Qt,Pt) is the classical trajectory with
the initial condition (Q′,P′). The classical density at t = 0 is chosen as Gaussians in the phase
space with position and momentum widths consistent with the initial quantum wavepacket density
|Ψ(Q, 0)|2. In order to compute P cm

D (t), we initiate an ensemble of 20000 initial conditions sampled
according to the initial density ρcm(Q′,P′; 0) and integrate their equation of motion forward in
time for 300 fs (0.3 ps) using a fourth-order Runge –Kutta method.

The resulting classical domain probabilities, shown in Fig. 2a, clearly indicate that the
mechanism switch occurs classically as well. Moreover, apart from the expected quantitative
differences, the classical and quantum results agree with regards to the timescales and the overall
qualitative dynamics. This is perhaps not surprising, since the dynamics of minimum uncertainty
wavepackets on short timescales are generally expected to exhibit excellent classical-quantum
correspondence. Nevertheless, it behooves us to identify the origins of the mechanism switch from
a classical phase space perspective.

Note that several other wavepackets, with mean energy greater than that of the index-2 saddle,
exhibit similar switching dynamics. However, it is crucial to point out that there do exist initial
wavepackets that undergo very different dynamics. In particular, they completely ignore the index-
2 region, instead of utilizing the (−+)/(+−) domains i.e., a stepwise mechanism. Such examples
can be labeled as “dynamical” Murrell – Laidler (DML) cases — dynamical, since the trajectories
are not on the IRC, and Murrell – Laidler since they access only the domains corresponding to the
index-1 saddles. In Fig. 4, we show one such example for DML for an initial state with a mean
energy Ē ≈ 0.045 au. Again, the classical and quantum domain probabilities are in good qualitative
agreement and the avoidance of the index-2 region is clear. The snapshots of the wavepacket shown
in Fig. 4 indicate that the wavepacket center essentially follows the classical trajectory.

We now turn our attention to a detailed investigation of the manifolds in the classical phase
space that are responsible for the observed reaction dynamics.
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4. CLASSICAL DYNAMICS: DYNAMICAL MURRELL–LAIDLER MECHANISM AND
THE COMPETITION BETWEEN STEPWISE AND CONCERTED MECHANISMS

4.1. A Survey of the Classical Phase Space

The model Hamiltonian in Eq. (2.1) has two degrees of freedom, and hence one can use the
Poincaré surface of section to visualize the global phase space structures. However, due to the multi-
well potential, a given sectioning condition can only reveal part of the dynamical information. For
example, the Q1 = 0 section will show the trajectories that isomerize between the (−−) and (+−)
wells but not the transitions between the (−−) and (−+) wells. Clearly, any sectioning condition
will only reveal two among the four wells. Therefore, some care is required in interpreting the
surface of sections.

Since in this work we are interested in the isomerization between the (−−) (reactant) and

the (++) (product) wells, we choose the Q1 = Q2 sectioning condition given by U+
1 in Eq. (4.3).

In Fig. 5, we show the resulting Poincaré sections for three values of the total energy that are
above that of the index-2 saddle and for coupling strengths ranging from γ = 0 to γ = 1.0 × 10−4.
We show example configuration space representation of the different dynamics in Fig. 6 and note
several observations at this stage. Firstly, for a fixed energy, increasing the coupling leads to a
mixed regular-chaotic phase space. Secondly, one can observe several classes of regular trajectories,
particularly at the higher energies. Clearly, the phase space is far from being completely chaotic,
even for the highest energy and coupling strength considered. In turn, this observation, apart from
illustrating the danger of naively assuming ergodicity at sufficiently high energies and couplings,
implies that whether the mechanism is concerted or not depends crucially on the nature of the
initially prepared state. As evident from the configuration space representation of the various
trajectories in Fig. 6, even at E = 0.05 au there is a coexistence of both concerted and nonconcerted
dynamics.

Fig. 5. Poincaré surface of sections along Q1 = Q2 for various coupling values (indicated) at a total energy of
(a) 0.001 au (top row), (b) 0.01 au (middle row), (c) 0.05 au (bottom row). The outer black line in the plots
is the boundary of energetically accessible energy surface, that is, the zero velocity curve or Hill’s region. In
addition, we note that symmetric island regions with different color mean that they are classically disconnected.

Note that, amongst the regular trajectories in Fig. 5, several nonlinear resonances can be
observed. Such nonlinear resonances correspond to facile energy exchange between the two modes.
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A particularly interesting example is the prominent resonance shown in yellow in Fig. 5, whose
configuration space representation (cf. Fig. 6f) shows that they correspond to the DML type. In
particular, the trajectory shown in Fig. 4 and the associated wavepacket evolution establish that
purely nonconcerted mechanism can manifest well above the index-2 saddle energy, depending on
the initial state preparation. It is important to note that the DML mechanism occurs due to the
coupling γ �= 0. This fact emphasizes the crucial role of IVR in the reaction mechanism.

Fig. 6. (a) Time-frequency analysis for the trajectories at a total energy of 0.05 au and a coupling strength of

γ = 1× 10−5. Configuration space representation of (b)–(e) concerted and (f)–(h) nonconcerted trajectories.
Note that the color code is the same as indicated in the corresponding surface of section shown in Fig. 5 and
the teal colored circle represents the initial state of the trajectory.

We note that the various nonlinear resonances that may manifest in the phase space can
be predicted based on the zeroth-order Hamiltonian. This is possible since the exact zeroth-
order nonlinear frequencies can be computed for a quartic oscillator. However, as is well known,
different sets of action-angle variables and frequencies are associated with energies below and above
the index-1 saddles. Thus, as is relevant to the DML example, focusing on the case where the
unperturbed energies for both the modes are greater than the respective index-1 saddle energies,
the ratio of the exact unperturbed frequencies is given by the expression

Ω1

Ω2
=

[
a21 + 4b1E1

a22 + 4b2E2

]1/4
K(k1)

K(k2)
. (4.1)

In the above equation, E1 and E2 correspond to the zeroth-order energies in the two modes. The
K(k) are complete elliptic integrals of the first kind with

k2j (Ej) =
1

2

⎡

⎣1 +
aj√

a2j + 4bjEj

⎤

⎦ . (4.2)

As usual, for Ω1/Ω2 = r/s with integers (r, s) one predicts the specific nonlinear resonances,
visible in the surface of section as resonance islands. Note that the analytic solution qj ∝
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cn(2K(kj)θj/π, kj), with θ̇j ≡ Ωj, allows one to determine the various possible nonlinear resonances.
Indeed, using the standard Fourier representation of the Jacobi elliptic function, it is possible to
show that the primary resonances are of the form Ω1 : Ω2 = 2r : 2s. Consequently, the lowest-order
term is a 2 : 2 resonance which corresponds to the DML dynamics. Similar results can be derived
for E1 and E2, which are below the index-2 saddle energies, only now all resonances of the form
Ω1 : Ω2 = r′ : s′ are possible.

For the model Hamiltonian of interest, further analysis in terms of the zeroth-order action-
angle variables is not straightforward since the zeroth-order Hamiltonian cannot be written down
explicitly in terms of the action variables. However, numerically, the technique of time-frequency
analysis is a powerful approach to determine the various frequency lockings. Moreover, the time-
frequency analysis can be applied rather generally to the fully coupled system in order to analyze
the nonintegrable dynamics. Here we use the continuous wavelet transform approach [48], which has
been employed earlier in several studies of IVR and reaction dynamics [49]. Using this approach,
in Fig. 6 we show the frequency ratios for the various classes of dynamics that are possible in the
model system. As expected, chaotic trajectories have frequencies that vary considerably with time,
whereas the regular trajectories have constant frequencies. Nevertheless, an important aspect to
note from the time-frequency analysis is that the chaotic trajectories exhibit stickiness on fairly long
timescales. Interestingly, from the lone example of the chaotic case shown in Fig. 6, the stickiness
can occur near concerted as well as nonconcerted phase space features.

4.2. Unstable Periodic Orbits and Invariant Manifolds that Regulate the Reaction Dynamics

In this section, we present the phase space structure governing the mechanism of concerted
and sequential isomerization. As discussed in Section 3, the switch from concerted to sequential is
accessible only when the energy is above the energy of the index-2 saddle. In the previous section, we
have shown the classical nature of the mechanism switch using quantum wavepacket and classical
phase space density dynamics. Here we will present the underlying phase space structures that
possibly regulate the mechanism switch for total energy, E > ES2 , where ES2 denotes the energy
of the index-2 saddle.

As the energy is increased above the energy of the index-2 saddle, the unstable periodic orbits
associated with the index-1 saddles with Q2 = 0 coordinates (at energy −0.0225 au) coalesce to
form one unstable periodic orbit, Γ13. Similarly, another unstable periodic orbit, Γ24, is obtained
due to the coalescence of index-1 saddles with Q1 = 0 (at energy −0.0162 au) coordinates. The
unstable periodic orbits are obtained using a differential correction of guess initial conditions and
numerical continuation to obtain the orbit at the desired energy. The unstable periodic orbits
have associated invariant manifolds of geometry S× R

1 (cylindrical geometry or tubes), as shown
in Fig. 7. These are computed using globalization of the initial conditions displaced along the
corresponding eigenvectors, which is used to generate the intersections with the surface of section
(Eq. (4.3)) and the resulting homoclinic tangle. To justify these phase space structures as underlying
the reaction mechanism switch, we present the results for E = 0.045 au and γ = 1× 10−5 au to
compare with the wavepacket calculations. We note that our discussion holds as long as the stability
type of the periodic orbits does not change with total energy and coupling strength. A detailed
analysis of the changes in the stability and related manifestation of the reaction mechanism is
beyond the scope of this article and will be the focus of future work. The methods used for computing
the phase space structures are described in the supplemental material (see [60] for more details on
a similar PES). We show the homoclinic tangles for sample values of the total energy and coupling
strength. Let us define the surface of section:

U±
1 = {(Q1, P1) | Q2 −Q1 = 0, −sign(P2 − P1) = ±1}, (4.3)

where the ± indicates direction of crossing of the surface, and in this article we use the + direction.
We note that a detailed analysis of phase space transport in this system requires combining the
two diagonal sections with appropriate crossing direction.

Due to the geometry of the unstable periodic orbits (UPOs) and the location of the surface
of section, Γ24 appears as a point (Q1 = 0, P1 = 0) and Γ13 appears as a point (located near the
energy boundary at Q1 = 0) on the surface of section. In addition, the pair of invariant manifolds
associated with Γ13 and Γ24 partition the energy surface into dynamically distinct regions. However,
due to their coexistence at the same energy, their combined role in phase space transport of classical
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Fig. 7. Phase space structures underlying the reaction mechanism switch at energies above the energy of the
index-2 saddle. Shown here are unstable periodic orbits, Γ13 and Γ24, and its associated invariant manifolds in
(a) and (b), respectively, and which are codimension 1 in the energy surface. The pair of cylindrical manifolds
form the skeleton of the reaction mechanism switch. The manifolds have been globalized for t = 0.5 ps and at
E = 0.045 au, which corresponds to the mean energy of the wavepacket used in quantum dynamics calculations.

trajectories is to be expected [50]. An easier way to explain and visualize their interplay is via the
intersection of the manifolds with the surface of section. The stable and unstable invariant manifolds
of these UPOs form the homoclinic tangle, as shown in Fig. 8c and 9c.

Fig. 8. (a) Classical and (b) quantum (� = 1.0) domain probabilities for an initial condition chosen on the
homoclinic tangle. (c) Location of the Husimi distribution at t = 0 superposed on the stable (blue) and unstable
(magenta) manifolds of the unstable periodic orbit Γ24. (d) A zoomed version of (c) indicating the precise
location of the initial wavepacket. The bottom row shows four different time snapshots of the evolving Husimi
distributions. The center of the wavepacket is at (Q1, P1, Q2, P2) = (−5.00,−5.00,−5.00,−14.62).
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4.3. Modulating the Role of the Index-2 Saddle

The above construction of the invariant manifolds, in light of the good classical-quantum
correspondence observed for the domain probabilities in Fig. 2, raises the intriguing possibility
of modulating the extent to which the index-2 saddle influences the reaction dynamics. We note
that the stable and unstable invariant manifolds of the UPOs form the homoclinic tangle, leading to
large scale chaos on sufficiently long timescales. However, the ultrashort dynamics implies early time
structure in the homoclinic tangle and, related to the early work on reactive islands [51], specific
initial states may exhibit widely different mechanisms. We note, however, that there is a distinct
possibility that the quantum wavepacket tunneling can compromise the classical “impenetrable”
barriers. Apart from the domain probabilities, we perform a more detailed comparison between the
classical and quantum dynamics in terms of computing the Husimi distribution [52], which is a
phase space distribution associated with the quantum state Ψ(Q, t)

ρH(P0,Q0; t) =
1

(2π�)2
|〈φ|Ψ(t)〉|2, (4.4)

where 〈P0,Q0|φ〉 is a minimum uncertainty state of the form in Eq. (3.1) centered at (P0,Q0).
Here we calculate the projection of the Husimi distribution onto the Q1 = Q2 plane in order for it
to be consistent with the classical surface of section.

Fig. 9. (a) and (b) Classical and the quantum (� = 1.0) domain probabilities, respectively, for another initial
condition chosen on the homoclinic tangle. (c) Location of the Husimi distribution at t = 0 superposed
on the stable (blue) and unstable (magenta) manifolds of the unstable periodic orbit Γ24. (d) A zoomed
version of (c) indicating the precise location of the initial wavepacket. The bottom row shows four different
time snapshots of the evolving Husimi distributions. The center of the wavepacket is at (Q1, P1, Q2, P2) =
(−3.00, 7.50,−3.00, 14.84).

To consolidate our claim, we visualize the manifold intersections on the surface of section along
with the evolution of the Husimi distribution over the same time interval for two different initial
conditions. In Figs. 8 and 9c, we show the location of the center of the quantum wavepacket with
respect to the homoclinic tangle formed by the intersection of the stable and unstable invariant
manifolds associated with the UPOs. A closer look at the location of the initial wavepackets
can be seen in Figs. 8 and 9d. It is interesting to note that, despite both the initial conditions
being in the homoclinic tangle and at the same energy of E = 0.045 au, the reaction mechanisms
are quite different. Moreover, both initial conditions also exhibit mechanisms distinct from the
example shown in Fig. 2 in terms of the extent of involvement of the index-2 saddle. Specifically,
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the initial wavepacket in Fig. 9 shows that the index-2 saddle starts to play a role at a much
later time t ∼ 110 fs. In this case, the early time mechanism is dominantly sequential or stepwise
(−−) → (−+) → (++). In contrast, the dynamics in Fig. 8 clearly involves the index-2 saddle at
a much earlier time. However, there is an important difference between the mechanism for the
initial wavepacket in Fig. 8b and the one in Fig. 2b. Although both do involve the index-2 saddle
dominantly at early times, the former case utilizes the concerted dynamics for the (+−) → (−+)
transfer and then sequentially to the product, whereas in the latter case, the index-2 saddle’s role
is predominantly to lead to the (−−) → (++) population transfer.

The snapshots of the Husimi distributions shown in the bottom panels of Figs. 8 and 9 indicate
that the evolution is mainly along the “track” formed by the homoclinic tangle of the Γ24 UPO.
This indicates, apart from justifying the close agreement between the classical and quantum domain
probabilities, a fairly detailed classical-quantum correspondence when it comes to the transport in
the phase space. In other words, much of the observed mechanism is justifiable from a purely classical
dynamical perspective. This observation further bolsters the claim by Accardi et al. [34], that the
wavepacket mechanism switching is essentially a quantized form of the mechanisms observed by
Black et al. [37]. However, it is worth pointing out that, despite this reasonably good classical-
quantum correspondence, one can clearly see key differences between the classical and quantum
dynamics. Firstly, as gleaned from the various domain probabilities shown, the role of the index-2
saddle is more dominant classically when compared to the quantum dynamics. Secondly, signatures
of quantum tunneling can be observed both in the domain probabilities and in the time evolution
of the Husimi distributions. In the case of the domain probabilities, the tunneling effects are, for
instance, seen at the various transition times — the classical probabilities exhibit a near “step”
function drop when compared to the smoother quantum variations. In terms of the Husimi, a clear
indication of quantum tunneling can be seen from the snapshot in Fig. 8 at t ∼ 0.104 ps, wherein
lower density patches can be observed in the reactant well. Note that around this time the classical
and the quantum domain probabilities are also not in a good correspondence.

5. CONCLUSIONS AND OUTLOOK

Our dynamical studies on a two-degree-of-freedom system model for double proton transfer in
molecular systems have clearly established a good classical-quantum correspondence with regards
to the mechanism of the reaction. More importantly, our studies corroborate the expectation that
the dynamical complexity precludes a clean separation of the mechanism into a purely sequential
or concerted one. We also show that the phase space of the system, despite strong couplings,
continues to exhibit mixed regular-chaotic dynamics. As a consequence, the mechanism is expected
to be sensitive to the specific molecule and the prepared initial state.

As we noted in the discussion in the last subsection, the detailed classical-quantum correspon-
dence and the ultrafast nature of the dynamics may allow for modulating the influence of the
index-2 saddle on the overall reaction mechanism. Although such an expectation is borne out
by Figs. 8 and 9, extracting the detailed phase space mechanisms warrants further studies. In
particular, the differences in the reaction mechanism via crossing the index-2 saddle between the
two initial conditions sampled from the homoclinic tangle are expected to be due to the result of
the underlying structure of the lobes [53]. We suspect that this, and the reaction mechanism switch
observed in Fig. 2, can be investigated by studying lobe dynamics on the section passing through
the intermediate wells along with the results in Section 4.3. In this context, a crucial question is
whether experiments can prepare such exquisitely tailored wavepackets in complex systems. An
equally relevant question is whether the predictions of the lobe dynamics are robust in the presence
of noise and or dissipation. Further work is required to address both of the above issues.

Finally, there are indications that coupling at least another mode to the two-degree-of-freedom
DPT model is crucial [36]. The results of the current study suggest that the classical-quantum
correspondence should hold in the higher-degree-of-freedom system as well. However, identifying
the invariant manifolds and transport barriers in phase space will require techniques such as that of
Lagrangian descriptors on suitably chosen sections [55–58] and the recently introduced asymptotic
trajectory indicator method [59]. We anticipate that a detailed study of the far richer intramolecular
vibrational energy flow pathways along with the invariant manifolds that regulate the phase space
transport will lead to control strategies based on exploiting the dynamics in the vicinity of the
higher-index saddles.
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