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Abstract—A convenient synthetic approach to 2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazole derivatives is proposed, 
which involves the preparation of 5-aryl-2,2'-bipyridine-6-carboxylic acid esters by the “1,2,4-triazine” metho-
dology and the subsequent construction of the 1,3,4-oxadiazole ring via the modifi cation of the ester group.
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1,3,4-Oxadiazole derivatives are of interest due to 
their biological activity [1, 2]. At the same time, the 
activity of 2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazole de-
rivatives studied in this work has scarcely been studied. 
Thus, of their closest analogues we can mention 
7-[5-(4-fl uorobenzyl)-1,3,4-oxadiazol-2-yl]-5-(pyridin-
2-yl)-1,6-naphthyridin-8-ol, which showed activity as 
an antiviral agent against HIV [3, 4]. Another example 
of a similar structure is oligomeric biosimilar ion 
channels, including a fragment of (1,10-phenanthrolin-
2-yl)-1,3,4-oxadiazole [5]. Thus, oligomers based on 
2,6-bis[2-(1,10-phenanthrolin-2-yl)-1,3,4-oxadiazol-
5-yl]pyridine proved to be selective toward potassium 
cations, while a derivative of 2,5-bis(1,10-phenanthro-
lin-2-yl)-1,3,4-oxadiazole did not show selectivity 
toward potassium and sodium cations [6].

By now the reported methods for the synthesis of 
such structures have been mainly limited to the use 
of compounds that are not easily accessible. Thus, 
the formation of the 1,3,4-oxadiazole ring via the 
reaction of compounds containing the 2H-tetrazol-5-
yl fragment with carboxylic acid chlorides has been 
described [7–10]. The assembly of this system by 
Suzuki cross-coupling, specifi cally the addition of the 

2-pyridyl residue, has been reported [3]. In addition, 
an example of the dehydration of the bishydrazide 
fragment is available [6, 11]. The proposed method 
features the simultaneous use of reagents and solvents, 
such as triethylamine, triphenylphosphine, chloroform, 
and carbon tetrachloride. It should be noted that the 
simultaneous use of these compounds at the last stage 
of synthesis complicates the subsequent medical 
application of the resulting product because of the risk 
that it may contain highly toxic impurities [12].

In this work, we developed a much simplifi ed method 
for preparing such structures. The key compound was 
2,2'-bipyridine-6-carboxylic acid ester 1 synthesized 
by the 1,2,4-triazine methodology [13–15]. Thus, the 
condensation of isonitrosoacetophenone hydrazone (2)
with 6-(methoxycarbonyl)pyridine-2-carbaldehyde (3)
gave a triazine intermediate 4 (Scheme 1). As shown
in [14], the reactions of 1,2,4-triazines with dienophi-
les, such as enamines, allow to annulate an aliphatic 
carbocycle to the newly formed pyridine ring. In 
accordance with this, we reacted compound 4 with 
1-morpholinocyclopentene to obtain ester 1, whose 
subsequent reaction with hydrazine hydrate led to 
hydrazide 5, and the latter, in its turn, served as a 
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substrate for constructing the 1,3,4-oxadiazole ring. 
This process was accomplished in two stages: fi rst 
compound 5 was reacted with acid chlorides 6 to form 
intermediates 7.

As known, the dehydration/heterocyclization of 
such compounds is one of the main approaches to 
the construction of the 1,3,4-oxadiazole ring. Various 
dehydrating agents (in particular, thionyl chloride, 
polyphosphoric acid, P2O5, etc.) were proposed in 
the literature [16]. In this work, we did not isolate 
compounds 7 and immediately involved them in 
heterocyclization/dehydration in a POCl3 medium. The 
yields of target products 8 reached 70%.

The structure of compounds 8 was confi rmed by 1H 
and 13C NMR spectroscopy, mass spectrometry, and 
elemental analysis. In particular, the 1H NMR spectra 
contain proton signals of the cyclopentene fragment in 
the resonance region of aliphatic protons, two aromatic 
substituents, as well the bipyridine fragment (singlet 
of the 6,7-dihydro-5H-cyclopenta[c]pyridine proton 
and signals of the pyridine ABC protons). The 1H 
NMR spectrum of intermediate hydrazide 5 shows two 

broadened singlets of the hydrazine fragment at 4.49–
4.64 and 9.17–9.22 ppm.

6-(4-Phenyl-6,7-dihydro-5H-cyclopenta[c]pyri-
din-1-yl)picolinohydrazide (5). 2,2'-Bipyridine 1
(204 mg, 0.62 mmol) was dissolved in ethanol (40 mL)
under heating. Hydrazine hydrate (0.15 mL, 3.09 mmol) 
was added to the resulting solution, the reaction mixture 
was refl uxed for 8 h, was cooled to room temperature, 
and concentrated under reduced pressure to 10 mL. 
The precipitate that formed was fi ltered, washed 
with ethanol, and dried. The product was used in the 
next step without further purifi cation. Yield 179 mg
(0.54 mmol, 88%). 1H NMR spectrum (DMSO-d6),
δ, ppm: 2.07–2.17 m (2H, 6-CH2), 3.07 t (2H, 7-CH2, 
3J 7.2 Hz), 3.07 t (2H, 5-CH2, 3J 7.2 Hz), 4.49–4.64 br.s 
[2H, C(O)NHNH2], 7.39–7.45 m (1H, Ph), 7.48–7.57 m 
(4H, Ph), 8.02–8.11 m (2H, py), 8.04 d.d (1H, H3, py, 3J 
7.6, 4J 1.2 Hz), 8.09 d.d (1H, H4, 3J 7.6, 7.6 Hz), 8.50 s 
{1H, H3 (cyclopenta[c]pyridine)}, 9.17–9.22 br.s [1H, 
C(O)NHNH2]. Mass spectrum, m/z (Irel, %): 331.16 
(100) [M + H]+.

Synthesis of oxadiazoles 8 (general procedure). 
Triethylamine (0.13 mL, 0.90 mmol) was added to a 
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solution of hydrazide 5 (100 mg, 0.3 mmol) in 40 mL of 
1,4-dioxane, after which acid chloride 6 (0.3 mmol) was 
added. The resulting solution was heated three times 
to 90°C, cooled to room temperature, and the solvent 
was removed under reduced pressure. POCl3 (10 mL) 
was added to the residue, and the reaction mixture was 
heated with stirring to 90°C for 8 h and then POCl3 was 
removed under reduced pressure. Ice was added to the 
residue, and then aqueous ammonia was added dropwise 
to the mixture until neutral pH. The precipitate that 
formed was fi ltered off, washed with water, and dried. 
The product was purifi ed by column chromatography 
(hexane–ethyl acetate, 1 : 1, Rf 0.5). An analytically pure 
sample was obtained by recrystallization from ethanol.

2-Phenyl-5-{6-(4-phenyl-6,7-dihydro-5H-cyclo-
penta[c]pyridin-1-yl)pyridin-2-yl}-1,3,4-oxadiazole 
(8a). Yield 87 mg (0.21 mmol, 70%). 1H NMR spectrum 
(CDCl3), δ, ppm: 2.14–2.23 m (2H, 6-CH2), 3.10 t (2H, 
7-CH2, 3J 7.6 Hz), 3.74 t (2H, 5-CH2, 3J 7.6 Hz), 7.39–
7.46 m (1H, Ph), 7.48–7.54 m (4H, Ph), 7.55–7.62 m 
(3H, Ph), 8.04 d.d [1H, H4 (C5H3N), 3J 7.6, 8.0 Hz], 
8.20–8.25 m (2H, Ph), 8.29 d and 8.53 d [1H, H3 and 
H5 (C5H3N), 3J 8.0 Hz], 8.58 s {1H, H3 (cyclopenta[c]-
pyridine)}. 13C NMR spectrum (CDCl3), δ, ppm: 25.4, 
32.6, 33.8, 122.0, 124.0, 124.7, 127.2, 127.9, 128.5, 
128.7, 129.2, 131.9, 134.4, 137.7, 137.7, 140.1, 142.3, 
146.7, 149.5, 153.6, 158.7, 164.3, 165.4. Mass spec-
trum, m/z (Irel, %): 417.17 (100) [M + H]+. Found, %:
C 77.75; H 4.71; N 13.27. C27H20N4O. Calculated, %:
C 77.87, H 4.84, N 13.45.

2-(4-Fluorophenyl)-5-{(4-phenyl-6,7-dihydro-
5H-cyclopenta[c]pyridin-1-yl)pyridin-6-yl}-1,3,4-
oxadiazole (8b). Yield 86 mg (0.198 mmol, 66%). 1H 
NMR spectrum (CDCl3), δ, ppm: 2.13–2.22 m (2H, 
6-CH2), 3.10 t (2H, 7-CH2, 3J 7.6 Hz), 3.71 t (2H, 
5-CH2, 3J 7.6 Hz), 7.22–7.30 m (2H, C6H4F), 7.40–
7.46 m (1H, Ph), 7.47–7.55 m (4H, Ph), 8.04 d.d [1H, 
H4 (C5H3N), 3J 7.6, 7.6 Hz], 8.19–8.25 m (2H, C6H4F), 
8.29 d and 8.53 d [1H, H3 and H5 (C5H3N), 3J 8.0 Hz], 
8.58 s {1H, H3 (cyclopenta[c]pyridine). 19F NMR spec-
trum (CDCl3), δ, ppm: –106.50 s (1F, C6H4F). 13C NMR 
spectrum (CDCl3), δ, ppm: 25.4, 32.6, 33.8, 116.5 d 
(J 22.4 Hz), 120.3 d (J 2.9 Hz), 122.0, 124.8, 127.9, 
128.6, 128.7, 129.4 d (J 9.0 Hz), 134.4, 137.7, 137.7, 
140.1, 142.3, 146.8, 153.6, 158.7, 164.3, 164.6, 165.0 d
(J 252.2 Hz). Mass spectrum, m/z (Irel, %): 435.16 
(100) [M + H]+. Found, %: C 74.51; H 4.53; N 12.74. 
C27H19FN4O. Calculated, %: C 74.64, H 4.41, N 12.90.

The 1H, 19F, and 13C NMR spectra were recorded on 
a Bruker Avance-400 spectrometer at 400, 376.5, and 
100 MHz, respectively, internal standards TMS (for 
1H and 13C) or CFCl3 (for 19F). The ESI mass spectra 
were recorded on a Bruker Daltonics MicrOTOF-Q 
II instrument. Elemental analysis was performed 
on a Perkin–Elmer PE 2400 II CHN analyzer. 
6'-Methoxycarbonyl-5-phenyl-2,2'-bipyridine 1 was 
prepared by the procedure described in [13]. All other 
reagents were obtained from commercial sources.

CONCLUSIONS

A simple and effi cient synthetic approach to 
2-([2,2'-bipyridin]-6-yl)-1,3,4-oxadiazoles derivatives, 
involving the preparation of 2,2'-bipyridine-6-carboxylic 
acid esters by the “1,2,4-triazine” methodology and the 
subsequent formation of the 1,3,4-oxadiazole ring via 
the modifi cation of the ester group.
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