Skip to main content
Log in

Structure and Properties of Synthetic Porphyrins and Porphyrin–Polymer Systems

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The review covers literature data on the synthesis of porphyrins, including amphiphilic star-shaped porphyrins which attract increasing attention from synthetic chemists. The potential of various porphyrins, metalloporphyrins, and their derivatives as photosensitizers for photodynamic therapy of cancer has been dis­cussed. The relation between the structure of porphyrins and their antimicrobial activity has been demonstrated. Polymer–porphyrin systems based on biodegradable polyesters and tetraphenylporphyrins immobilized thereon have been considered to be promising composite materials with bactericidal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Celli, J.P., Spring, B.Q., Rizvi, I., Evans, C.L., Samkoe, K.S., Verma, S., Pogue, B.W., and Hasan, T., Chem. Rev., 2010, vol. 110, p. 2795. https://doi.org/10.1021/cr900300p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ethirajan, M., Chen, Y., Joshi, P., and Pandey, R.K., Chem. Soc. Rev., 2011, vol. 40, p. 340. https://doi.org/10.1039/B915149B

    Article  CAS  PubMed  Google Scholar 

  3. Chang, H.H., Cohen, T., Grad, Y.H., Hanage, W.P., O’Brien, T.F., and Lipsitch, M., Microbiol. Mol. Biol., 2015, vol. 79, p. 101. https://doi.org/10.1128/MMBR.00039-14

    Article  CAS  Google Scholar 

  4. Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C.G., and Irfan, S., Lancet Infect. Dis., 2010, vol. 10, p. 597. https://doi.org/10.1016/S1473-3099(10)70143-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O’Neill, J., Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, London, 2014.

  6. Photodynamic Inactivation of Microbial Pathogens. Medical and Environmental Applications, Ham­blin, M.R. and Jori, G., Eds., London: Royal Soc. Chem., 2011, p. 11.

  7. Fleitas, O. and Franco, O.L., Front. Microbiol., 2016, vol. 7, p. 381. https://doi.org/10.3389/fmicb.2016.00381

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boyle-Vavra, S., Labischinski, H., Ebert, C.C., Ehlert, K., and Daum, R.S., Antimicrob. Agents Chemother., 2001, vol. 45, p. 280. https://doi.org/10.1128/aac.45.1.280-287.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roland, K.L., Esther, C.R., and Spitznagel, J.K., J. Bacteriol., 1994, vol. 176, p. 3589. https://doi.org/10.1128/jb.176.12.3589-3597.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harder, K.J., Nikaido, H., and Matsuhashi, M., Anti­microb. Agents Chemother., 1981, vol. 20, p. 549. https://doi.org/10.1128/aac.20.4.549

    Article  CAS  PubMed  Google Scholar 

  11. Park, Y.S., Lee, H., Chin, B.S., Han, S.H., Hong, S.G., Hong, S.K., Kim, H.Y., Uh, Y., Shin, H.B., Choo, E.J., Han, S.-H., Song, W., Jeong, S.H., Lee, K., and Kim, J.M., J. Hosp. Infect., 2011, vol. 79, p. 54. https://doi.org/10.1016/j.jhin.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  12. Pozdeev, O.K., Med. Mikrobiol., 2010, vol. 768, p. 6.

    Google Scholar 

  13. Wainwright, M., J. Antimicrob. Chemother., 1998, vol. 42, p. 13. https://doi.org/10.1093/jac/42.1.13

    Article  CAS  PubMed  Google Scholar 

  14. Mesquita, M.Q., Dias, C.J., Neves, M.G.P.M.S., Almeida, A., and Faustino, M.A.F., Molecules, 2018, vol. 23, article no. 2424. https://doi.org/10.3390/molecules23102424

  15. Vera, D.M., Haynes, M.H., Ball, A.R., Dai, T., Astra­kas, C., Kelso, M.J., Hamblin, M.R., and Tegos, G.P., Photochem. Photobiol., 2012, vol. 88, p. 499. https://doi.org/10.1111/j.1751-1097.2012.01087.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santin, G.C., Oliveira, D.S.B., Galo, R., Borsatto, M.C., and Corona, S.A.M., Sci. World J., 2014, vol. 2014, article ID 824538. https://doi.org/10.1155/2014/824538

  17. Wardlaw, J.L., Sullivan, T.J., Lux, C.N., and Austin, F.W., Vet. J., 2012, vol. 192, p. 374. https://doi.org/10.1016/j.tvjl.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  18. de Melo, W.C.M.A., Avci, P., de Oliveira, M.N., Gupta, A., Vecchio, D., Sadasivam, M., Chandran, R., Huang, Y.-Y., Yin, R., Perussi, L.R., Tegos, G.P., Perussi, J.R., Dai, T., and Hamblin, M.R., Expert Rev. Anti-Infect. Ther., 2013, vol. 11, p. 669. https://doi.org/10.1586/14787210.2013.811861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferreyra, D.D., Reynoso, E., Cordero, P., Spesia, M.B., Alvarez, M.G., Milanesio, M.E., and Durantini, E.N., J. Photochem. Photobiol., B, 2016, vol. 158, p. 243. https://doi.org/10.1016/j.jphotobiol.2016.02.021

    Article  CAS  PubMed  Google Scholar 

  20. Rajora, M.A., Lou, J.W.H., and Zheng, G., Chem. Soc. Rev., 2017, vol. 46, p. 6433. https://doi.org/10.1039/C7CS00525C

    Article  CAS  PubMed  Google Scholar 

  21. Josefsen, L.B. and Boyle, W., Theranostics, 2012, vol. 2, p. 916. https://doi.org/10.7150/thno.4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Habermeyer, B. and Guilard, R., Photochem. Photobiol. Sci., 2018, vol. 17, p. 1675. https://doi.org/10.1039/C8PP00222C

    Article  CAS  PubMed  Google Scholar 

  23. Basso, G., Cargnelutti, J.F., Oliveira, A.L. Acunha, T.V., Weiblen, R., Flores, E.F., and Iglesias, B.A., J. Por­phyrins Phthalocyanines, 2019, vol. 23, p. 1041. https://doi.org/10.1142/S1088424619500767

    Article  CAS  Google Scholar 

  24. Lopes, L.Q.S., Ramos, A.P., Copetti, P.M., Acunha, T.V., Iglesias, B.A., Santos, R.C.V., Machado, A.K., and Sagrillo, M.R., Microb. Pathog., 2019, vol. 128, p. 47. https://doi.org/10.1016/j.micpath.2018.12.038

    Article  CAS  Google Scholar 

  25. Moghnie, S., Tovmasyan, A., Craik, J., BatinicHaberle, I., and Benov, L., Photochem. Photobiol. Sci., 2017, vol. 16, p. 1709. https://doi.org/10.1039/c7pp00143f

    Article  CAS  PubMed  Google Scholar 

  26. Lucky, S.S., Soo, K.C., and Zhang, Y., Chem Rev., 2015, vol. 115, p. 1990. https://doi.org/10.1021/cr5004198

    Article  CAS  PubMed  Google Scholar 

  27. Koifman, O.I. and Ageeva, T.A., Vysokomol. Soedin., Ser. C, 2004, vol. 46, p. 2187.

    CAS  Google Scholar 

  28. Wang, F., Ding, K., and Wu, F., Dyes Pigm., 2011, vol. 91, p. 199. https://doi.org/10.1016/j.dyepig.2011.03.008

    Article  CAS  Google Scholar 

  29. Zoltan, T., Vargas, F., López, V., Chávez, V., Rivas, C., and Ramírez, A.H., Spectrochim. Acta, Part A, 2015, vol. 135, p. 747. https://doi.org/10.1016/j.saa.2014.07.053

    Article  CAS  Google Scholar 

  30. Polevaya, Yu.P., Cand. Sci. (Chem.) Dissertation, Moscow, 2014.

  31. Ivanova, Yu.B., Semeykin, A.S., Pukhovskaya, S.G., and Mamardashvili, N.Zh., J. Org. Chem., 2019, vol. 55, p. 1878. https://doi.org/10.1134/S107042801912011X

    Article  CAS  Google Scholar 

  32. Dai, X.-H., Wang, Z.-M., Gao, L.-Y., Pan, J.-M., Wang, X.-H., Yan, Y.-S., and Liu, D.-M., New J. Chem., 2014, vol. 38, p. 3569. https://doi.org/10.1039/C3NJ01621H

    Article  CAS  Google Scholar 

  33. Dai, X.-H., Wang, Z.-M., Liu, W., Dong, C.-M., Pan, J.-M., Yuan, S.-S., Yan, Y.-S., Liu, D.-M., and Sun, L., Colloid Polym. Sci., 2014, vol. 292, p. 2111. https://doi.org/10.1007/s00396-014-3244-6

    Article  CAS  Google Scholar 

  34. Dai, X.-H., Hua, J., Cai, M.-H., Wang, H., Zhou, Z.-P., Pan, J.-M., Wang, X.-H., Yan, Y.-S., Liu, D.-M., and Sun, L., React. Funct. Polym., 2015, vol. 89, p. 9. https://doi.org/10.1016/j.reactfunctpolym.2015.02.002

    Article  CAS  Google Scholar 

  35. Dai, X.-H., Wang, Z.-M., Pan, J.-M., Yuan, S.-S., Yan, Y., Liu, D.-M., and Sun, L., J. Biomater. Sci., Polym. Ed., 2014, vol. 25, no. 16, p. 1755. https://doi.org/10.1080/09205063.2014.946878

    Article  CAS  PubMed  Google Scholar 

  36. da Silveira C.H., Vieceli, V., Clerici, D.J., Santos, R.C.V., and Iglesias, B.A., Photodiagn. Photodyn. Ther., 2020, vol. 31, article ID 101920. https://doi.org/10.1016/j.pdpdt.2020.101920

  37. Shleeva, M.O., Savitsky, A.P., Nikitushkin, V.D., Soloviev, I.D., Trutneva, K.A., Keruchenko, Ya.S., and Kaprelyants, A.S., Appl. Biochem. Microbiol., 2020, vol. 56, p. 285. https://doi.org/10.1134/S000368382003014X

    Article  CAS  Google Scholar 

  38. Kuruppuarachchi, M., Savoie, N., Lowry, A., Alonso, C., and Boyle, R.W., Mol. Pharm., 2011, vol. 8, p. 920. https://doi.org/10.1021/mp200023y

    Article  CAS  PubMed  Google Scholar 

  39. Chen, R.-J., Chen, P.-C., Prasannan, A., Vinayagam, J., Huang, C.-C., Chou, P.-Y., Weng, C.-C., Tsai, H.C., and Lin, S.-Y., Mater. Sci. Eng. C, 2016, vol. 63, p. 678. https://doi.org/10.1016/j.msec.2016.03.034

    Article  CAS  Google Scholar 

  40. Tian, J., Huang, B., Nawaz, M.H., and Zhang, W., Coord. Chem. Rev., 2020, vol. 420, article ID 213410. https://doi.org/10.1016/j.ccr.2020.213410

  41. Kopylov, A.S., Savko, M.A., Zarkhina, T.S., Lov­skaya, D.D., Lebedev, A.E., Men’shutina, N.V., and Solov’eva, A.B., Abstracts of Papers, IX Nauchno-prakticheskaya rjyathtywbz “Sverkhkriticheskie flyuidy (SKF): fundamental’nye osnovy, tekhnologii, innovatsii” [IXth Scientific and Practical Conf. “Supercritical fluids (SCF): Fundamentals, Technologies, and Innovations”], Sochi, 2017, p. 91.

  42. Solov’eva, A.B., Aksenova, N.A., Tolstykh, P.I., Glagolev, N.N., Melik-Nubarov, N.S., Ivanov, A.V., Volkov, V.I., Chernyak, A.V., and Sister, V.G., Lazer. Med., 2012, vol. 16, p. 9.

    Google Scholar 

  43. Tertyshnaya, Yu.V., Zhdanova, K.A., Zakharov, M.S., and Bragina, N.A., RU Patent no. 2752860 C1, 2021.

  44. Ol’khov, A.A., Tyubaeva, P.M., Staroverova, O.V., Karpova, S.G., Lobanov, A.V., and Iordanskii, A.L., Collection of Papers, XX Mezhdunarodnyi nauchno-prakticheskii forum “Fizika voloknistykh materialov: struktura, svoistva, naukoemkie tekhnologii i materialy (SMARTEX-2017)” (XXth Int. Scientific and Practical Forum “Physics of Fibrous Materials: Structure, Properties, High Technologies, and Materials (SMARTEX-2017), Ivanovo, 2017, p. 81.

  45. Tertyshnaya, Yu.V., Zakharov, M.S., Zhdanova, K.A., and Bragina, N.A., Polym. Sci., Ser. B, 2021, vol. 63, p. 905. https://doi.org/10.1134/S1560090421060282

    Article  CAS  Google Scholar 

  46. Alekseeva, O.V., Bagrovskaya, N.A., Pukhovskaya, S.G., and Vershinina, I.A., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2012, vol. 55, p. 71.

    CAS  Google Scholar 

  47. Li, D., Gao, B., and Duan, Q., J. Biomater. Sci., Polym. Ed., 2019, vol. 30, no. 10, p. 846. https://doi.org/10.1080/09205063.2019.1605867

    Article  CAS  PubMed  Google Scholar 

  48. Li, J.-Zh., Jiang, F., and Wan, X.-B., Acta Polym. Sin., 2012, p. 1314. https://doi.org/10.3724/SP.J.1105.2012.12054

  49. Tertyshnaya, Yu.V., Khvatov, A.V., and Lobanov, A.V., Russ. J. Phys. Chem. B, 2017, vol. 11, p. 828. https://doi.org/10.1134/S199079311705013X

    Article  CAS  Google Scholar 

  50. Alopina, E.V., Ageeva, T.A., and Koifman, O.I., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, p. 81.

    CAS  Google Scholar 

  51. Pechnikova, N.L., Alopina, E.V., Kuznetsov, O.Yu., Ageeva, T.A., and Koifman, O.I., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2017, vol. 60, p. 52. https://doi.org/10.6060/tcct.2017602.5404

    Article  CAS  Google Scholar 

  52. Zhdanova, K.A., Cherepanova, K.S., Bragina, N.A., and Mironov, A.F., Macroheterocycles, 2016, vol. 9, p. 169. https://doi.org/10.6060/mhc160423z

    Article  CAS  Google Scholar 

  53. Arshakova, S.G. and Plokhikh, A.V., Naukosfera, 2020, no. 12, part 1, p. 1.

    Google Scholar 

  54. Tertyshnaya, Yu.V., Khvatov, A.V., and Lobanov, A.V., Russ. J. Phys. Chem., 2020, vol. 14, p. 1022. https://doi.org/10.1134/S1990793120060135

    Article  CAS  Google Scholar 

  55. Tertyshnaya, Yu.V., Lobanov, A.V., Karpova, S.G., and Pantyukhova, P.V., J. Mol. Liq., 2020, vol. 302, article ID 112176. https://doi.org/10.1016/j.molliq.2019.112176

  56. Zvezdina, S.V., Berezin, M.B., and Berezin, B.D., Russ. J. Coord. Chem., 2010, vol. 36, p. 711. https://doi.org/10.1134/S1070328410090125

    Article  CAS  Google Scholar 

  57. Zvezdina, S.V., Berezin, M.B., and Berezin, B.D., Russ. J. Coord. Chem. 2010, vol. 36, p. 913. https://doi.org/10.1134/S1070328410120080

Download references

ACKNOWLEDGMENTS

The authors thank the Ministry of Science and Higher Education of the Russian Federation (project no. 122041300207-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Zakharov.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 7, pp. 835–857 https://doi.org/10.31857/S0514749223070017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, M.S., Tertyshnaya, Y.V. Structure and Properties of Synthetic Porphyrins and Porphyrin–Polymer Systems. Russ J Org Chem 59, 1083–1101 (2023). https://doi.org/10.1134/S1070428023070011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023070011

Keywords:

Navigation