Skip to main content
Log in

Quantum-chemical investigation of thermal transformations of tris(hydroxymethyl)phosphine

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

In keeping with the calculations of thermodynamic characteristics of possible transformations of tris(hydroxymethyl)phosphine in the framework of DFT-approach using hybrid exchange-correlation functional B3LYP with the basis 6–311++G** the probability of transformation of tris(hydroxymethyl)phosphine at the temperature below 350 K into methylbis(hydroxymethyl)phosphine oxide is higher than the conversion into methyl(hydroxymethyl)phosphine oxide, and at the temperature over 350 K the trend is opposite. The probability of the formation of a heterocyclic dimer at the temperature over 300 K is somewhat lower and of bis(hydroxymethyl)phosphine in the temperature range 250–550 K is significantly lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reuter, M., and Orthner, L., FRG Patent Appl. no. 1035135, 1959; Chem. Abstr., 1960, vol. 54, p. 14125.

    Google Scholar 

  2. Erastov, O.A. and Nikonov, G.N., Funktsional’nozameshchennye fosfiny i ikh proizvodnye (Functionally Substituted Phosphines and Their Derivatives), Moscow: Nauka, 1986.

    Google Scholar 

  3. Valetdinov, R.K., Goruchest’ polimernykh materialov. Mezhvuzovskii sbornik nauchykh trudov, Volgograd: izd. Volgogr. Polikhn. Inst., 1987, p. 43.

    Google Scholar 

  4. Petrov, K.A., and Parshina, V.A., Russ. Chem. Rev., 1968, vol. 37, p. 1218.

    Article  CAS  Google Scholar 

  5. James, R., and Lorenzini, F., Coord. Chem. Rev., 2010, vol. 254, p. 420.

    Article  CAS  Google Scholar 

  6. Marzano, C., Gandin, V., Pellei, M., Colavito, D., Papini, G., Lobbia, G.G., Del Giudice, E., Porchia, M., Tisato, F., and Santini, C., J. Med. Chem., 2008, vol. 51, p. 798.

    Article  CAS  Google Scholar 

  7. Grekov, L.I., and Novakov, I.A., Kinet. Catal., 2006, vol. 47, p. 358.

    Article  CAS  Google Scholar 

  8. Grekov, L.I., and Litinskii, A.O., Russ. J. Gen. Chem., 2009, vol. 79, p. 905.

    Article  CAS  Google Scholar 

  9. Grekov, L.I., Kalinkin, D.P., and Litinskii, A.O., Russ. J. Gen. Chem., 2011, vol. 81, p. 1111.

    Article  CAS  Google Scholar 

  10. Grekov, L.I., Vladimtseva, I.V., Efremenko, V.I., and Chernov, A.B., Biotecknologia, 2007, vol. 4, p. 34.

    Google Scholar 

  11. Trippett, S., J. Chem. Soc., 1961, p. 2813.

    Google Scholar 

  12. Buckler, Sh.A., J. Am. Chem. Soc., 1960, vol. 82, p. 4215.

    Article  Google Scholar 

  13. Hellmann, H., Bader, J., Burkner, H., and Schumacher, O., Lieb. Ann., 1962, vol. 659, p. 49.

    Article  CAS  Google Scholar 

  14. Valetdinov, R.K., Zuikova, A.N., Zyablikova, T.A., and Il’yasov, A.V., Zh. Obshch. Khim., 1979, vol. 49, p. 503.

    Google Scholar 

  15. Mukhutdinov, E.A., Mukhutdinov, A.A., Kovalenko, V.I., and Sol’yashinova, O.A., Russ. J. Phys. Chem. A, 2007, vol. 81, p. 747.

    Article  CAS  Google Scholar 

  16. Minkin, V.I., Simkin, B.Ya., and Minyaev, R.M., Teoriya stroeniya molekul (Theory of Molecular Structure), Rostov-on-Don: Feniks, 1997.

    Google Scholar 

  17. Naumov, V.A. and Vilkov, L.V., Molekulyarnye struktury fosfororganicheskikh soedinenii (Molecular Structures of Organophosphorus Compounds), Moscow: Nauka, 1986.

    Google Scholar 

  18. Koch, W., A Chemist’ Guide to Density Functional Theory, Wiley-VCH, 2001.

    Book  Google Scholar 

  19. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.

    Article  CAS  Google Scholar 

  20. Lee, C., Yang, W., and Parr, R.G., Phys. Rev., 1988, vol. 37, p. 785.

    Article  CAS  Google Scholar 

  21. Bulankin, R.P., Tuzhikov, O.I., and Khardin, A.P., Trudy Volgogr. politekhn. inst. Ser. khim. i khim. tekhnol., 1971, p. 66.

    Google Scholar 

  22. Pudovik, A.N., Konovalova, I.V., Romanov, G.V., Pozhidaev, V.M., Anoshina, N.P., and Lapin, A.A., Zh. Obshch. Khim., 1978, vol. 48, p. 1001.

    CAS  Google Scholar 

  23. Reuter, M., and Beermann, C., US Patent no. 3927112, 1975.

  24. Reuter, M., and Rupp, W., US Patent no. 3927113, 1975.

  25. Lippsmeier, B., Hestermann, K., and Reuter, M., US Patent no. 4020110, 1977.

  26. Lippsmeier, B., Hestermann, K., and Reuter, M., US Patent no. 4028421, 1977.

  27. Bright, J.H., US Patent no. 4049719, 1977.

  28. Lin, K., US Patent no. 3732316, 1973.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Grekov.

Additional information

Original Russian Text © L.I. Grekov, A.O. Litinskii 2014, published in Zhurnal Organicheskoi Khimii, 2014, Vol. 50, No. 8, pp. 1106–1111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grekov, L.I., Litinskii, A.O. Quantum-chemical investigation of thermal transformations of tris(hydroxymethyl)phosphine. Russ J Org Chem 50, 1087–1092 (2014). https://doi.org/10.1134/S107042801408003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042801408003X

Keywords

Navigation