Skip to main content
Log in

Hydrate-Anion Complex of Proton [H(H2O)n]+А as the Basis of the Complex Acidity Function Н0w of Aqueous Solutions of Strong Mineral Acids in Excess of Water

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Based on the concept of the proton hydrate-anion complex [H(H2O)n]+A, equations are proposed that characterize the catalytic activity of the proton in aqueous solutions of three acids: sulfuric, hydrochloric, and chloric. The equations are based on the linear dependence of the value of “excessive acidity” on the logarithm of the relative stoichiometric concentration of water Х = f(log C*w) in acid solutions with a predominance of water (Н2О/НА > 1). Using the directly proportional dependence of the Hammett function (–H0) on the sum of parameters (log C*H+ + mX), two-parameter equations were obtained for calculating the complex function of acidity –Hw0 = log C*H+ + Blog C*w (standard state—pure water, C0w). The equations make it possible to calculate the function Hw0 at a given acid concentration, having only data on the concentrations of the proton CH+ and water Hw0, i.e. avoiding the use of the ratio of the activity coefficients of the components included in parameter X. The function Hw0 collectively reflects the participation of proton and water in the acidity of the medium, practically reproduces the experimental values of H0 obtained by different authors in the concentration range from pure water to 68 wt % (H2SO4), 40% (HCl), 70% (HClO4), combines the pH and H0 scales. It is concluded that the Blog Hw0 contribution, which characterizes the participation of water in the hydration shells of ions, is determined by their nature and plays no less important role in characterizing the acidity of the medium than the proton itself. The final tables of the concentration dependence of the values Hw0 for each of the acids are given. The paper represents a methodological review, since it is based on a critical analysis of experimental literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. Cw—stoichiometric water concentration (analytical concentration of H2O in a two-component H2O/HA system, expressed in mol/L and reduced to normal conditions).

  2. The state of pure solvent (water) at 298.15 K is taken as the standard state of water (C0w = 1000 cm3·0.99705 g/cm3/ 18.01153 g/mol = 55.34462mol; log C0w = 1.74308).

  3. The activity of water is the result of its corrected concentration on the activity coefficient, which takes into account a decrease in the vapor pressure of water over an acid solution compared with the vapor pressure over clean water and, in turn, an supposed decrease in its real concentration due to the formation of H-bonds with an excess proton and other ions of the medium.

  4. In the case of sulfuric acid, parameter B reflects the total effect of the anions: HSO4 and the doubly charged anion SO42–, which reaches a maximum concentration of 56% H2SO4.

REFERENCES

  1. Smith, M.B. and March, J., March’s Advanced Organic Chemistry Reactions, Mechanisms and Structure, 6th ed.; New York: Wiley, 2006, ch. 11.

  2. Chorkendorff, I. and Niemantsverdriet, J.W., Concepts of Modern Catalysis and Kinetics. Third Completely Revised and Enlarged Edition, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Germany, 2017.

  3. Berezin, D.B., Shuhto, O.V., Syrbu, S.A., and Koifman, O.I., Organicheskaya khimiy (Organic Chemistry), Moscow: Lan, 2014.

  4. Klumpp, D.A., Electrophilic Aromatic Substitution in Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds, Mortier, J., Ed., New Jersey: John Wiley & Sons, 2016..

  5. Stuyver, Th., Danovich, D., De Proft, F., and Shaik, S., J. Am. Chem. Soc., 2019, vol. 141, no. 24, pp. 9719–9730. https://doi.org/10.1021/jacs.9b04982

    Article  CAS  PubMed  Google Scholar 

  6. Marx, D., Tuckerman, M.E., Hutter, J., and Parrinello, M., Nature, 1999, vol. 397, pp. 601−604. https://doi.org/10.1038/17579

    Article  CAS  Google Scholar 

  7. Silverstein, T.P., J. Chem. Educ., 2011, vol. 88, p. 875. https://doi.org/10.1021/ed1010213

    Article  CAS  Google Scholar 

  8. Knight, C. and Voth, G.A., Acc. Chem. Res., 2012, vol. 45, pp. 101–109. https://doi.org/10.1021/ar200140h

    Article  CAS  PubMed  Google Scholar 

  9. Reed, C.A., Acc. Chem. Res., 2013, vol. 46, pp. 2567–2575. https://doi.org/10.1021/ar400064q

    Article  CAS  PubMed  Google Scholar 

  10. Peng, Y., Swanson, J.M.J., Kang, S., Zhou, R., and Voth, G.A., J. Phys. Chem. B, 2015, vol. 119, pp. 9212–9218. https://doi.org/10.1021/jp5095118

    Article  CAS  PubMed  Google Scholar 

  11. Agmon, N., Bakker, H.J., Campen, R.K., Henchman, R.H., Pohl, P., Roke, S., Thämer, M., and Hassanali, A., Chem. Rev., 2016, vol. 116, pp. 7642–7672. https://doi.org/10.1021/acs.chemrev.5b00736

  12. Paenurk, E., Kaupmees, K., Himmel, D., Kutt, A., Kaljurand, I., Koppel, I.A., Krossing, I., and Leito, I., Chem. Sci., 2017, vol. 8, pp. 6964–6973. https://doi.org/10.1039/C7SC01424D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klare, H.F.T. and Oestreich, M., J. Am. Chem. Soc., 2021, vol. 143, no. 38, pp. 15490–15507. https://doi.org/10.1021/jacs.1c07614

    Article  CAS  PubMed  Google Scholar 

  14. Calio, P.B., Li, Ch., and Voth, G.A., J. Am. Chem. Soc., 2021, vol. 143, no. 44, pp. 18672–18683. https://doi.org/10.1021/jacs.1c08552

    Article  CAS  PubMed  Google Scholar 

  15. Librovich, N.B. and Kislina, I.S., Kinet. Catal., 2002, vol. 43, no. 1, pp. 51–55.

    Article  CAS  Google Scholar 

  16. Basilevsky, M.V. and Vener, M.V., Russ. Chem. Rev., 2003, vol. 72, no. 1, pp. 1–33. https://doi.org/10.1070/RC2003v072n01ABEН000774

  17. Gutowski, K.E. and Dixon, D.A., J. Phys. Chem. A, 2006, vol. 110, pp. 12044–12054. https://doi.org/10.1021/jp065243d

    Article  CAS  PubMed  Google Scholar 

  18. Cox, R.A., Intern. J. Mol. Sci., 2011, pp. 8316–8332. https://doi.org/10.3390/ijms12128316

  19. Cox, R.A., Adv. Phys. Org. Chem., 2012, vol. 46, pp. 1–55. https://doi.org/10.1016/B978-0-12-398484-5.00001-8

    Article  CAS  Google Scholar 

  20. Kozlov, V.A., Ivanov, S.N., Koifman, O.I., J. Phys. Org. Chem., 2017, vol. 29, pp. 1–29. https://doi.org/10.1002/poc.3715

    Article  CAS  Google Scholar 

  21. Trummal, A., Lipping, L., Kaljurand, I., Koppel, I.A., and Leito, I., J. Phys. Chem. A, 2016, vol. 120, no. 20, pp. 3663–3669. https://doi.org/10.1021/acs.jpca.6b02253

    Article  CAS  PubMed  Google Scholar 

  22. Ivanov, S.N., Kozlov, V.A., and Koifman, O.I., J. Sol. Chem., 2021, vol. 5, no. 5, pp. 630–651. https://doi.org/10.1007/s10953-021-01066-7

    Article  CAS  Google Scholar 

  23. Voth, G.A., Acc. Chem. Res., 2006, vol. 39, no. 2, pp. 143–150. https://doi.org/10.1021/ar0402098

    Article  CAS  PubMed  Google Scholar 

  24. Isaev, A.N., Ross. Khim. Zh., 2007, vol. 51, no. 5, pp. 34–48.

    CAS  Google Scholar 

  25. Silverstein, T.P., Front. Mol. Biosci., 2021, vol. 8. Art. 764099. https://doi.org/10.3389/fmolb.2021.764099

  26. Kozlov, V.A., Nikiforova, T.E., Loginova, V.A., and Koifman, O.I., J. Hazard. Mat., 2015, vol. 299, pp. 725–732. https://doi.org/10.1016/j.jhazmat.2015.08.004

    Article  CAS  Google Scholar 

  27. Cerfontain, H., Mechanistic Aspects in Aromatic Sulfonation and Desalfonation, New York: Inter science, 1968, ch. 2, pp. 13–45.

  28. Vinnik, M.I. and Abramovich, L.D., Izv. Akad. Nauk SSSR, Ser. Khim., 1972, no. 4, pp. 834–840.

    Google Scholar 

  29. Smirnov, A.I. and Vinnik, M.I., Zh. Fiz. Khim., 1979, vol. 53, no. 5, pp. 1247–1252.

    CAS  Google Scholar 

  30. Kozlov, V.A. and Popkova, I.A., Zh. Org. Khim., 1980, vol. 16, no. 1, pp. 106–110.

    CAS  Google Scholar 

  31. Kozlov, V.A. and Popkova, I.A., Zh. Org. Khim., 1982, vol. 18, no. 4, pp. 881–886.

    CAS  Google Scholar 

  32. Kozlov, V.A. and Bagrovskaya, N.A., Zh. Org. Khim., 1986, vol. 22, no. 6, pp. 1228–1236.

    CAS  Google Scholar 

  33. Koleva, G., Galabov, B., Kong, J., Schaefer, H.F., and Schleyer, P., J. Am. Chem. Soc., 2011, vol. 133, no. 47, pp. 19094–19101. https://doi.org/10.1021/ja201866h

    Article  CAS  PubMed  Google Scholar 

  34. Galabov, B., Nalbantova, D., Schleyer, P.R., and Schaefer, H.F.III, Acc. Chem. Res., 2016, vol. 49, no. 6, pp. 1191–1199. https://doi.org/10.1002/chin.201635190

    Article  CAS  PubMed  Google Scholar 

  35. Ivanov, S.N., Gnedin, B.G., and Shhukina, M.V., Zh. Org. Khimi., 1988, vol. 24, no. 4, pp. 810–817.

    Google Scholar 

  36. Ivanov, S.N., Kislov, V.V., and Gnedin, B.G., Zh. Obshch. Khim., 1998, vol. 68, no. 7, pp. 1123−1128.

    CAS  Google Scholar 

  37. Paddison, S.J. and Elliott, J.A., Solid State Ion., 2006, vol. 177, pp. 2385–2390. https://doi.org/10.1016/j.ssi.2006.03.015

    Article  CAS  Google Scholar 

  38. Dobrovol’skii, Yu.A., Volkov, E.V., Pisareva, A.V., Fedotov, Yu.A., Likhachev, D.Yu., and Rusanov, A.L., Russ. J. Gen. Chem., 2007, vol. 77, no. 4, pp. 766–777. https://doi.org/10.1134/S1070363207040378

    Article  CAS  Google Scholar 

  39. Agmon, N. and Gutman, M., Nat. Chem., 2011, vol. 3, pp. 840−842. https://doi.org/10.1038/nchem.1184

    Article  CAS  PubMed  Google Scholar 

  40. Feng, S. and Voth, G.A., J. Phys. Chem. B, 2011, vol. 115, no. 19, pp. 5903–5912. https://doi.org/10.1021/jp2002194

    Article  CAS  PubMed  Google Scholar 

  41. Savage, J. and Voth, G.A., J. Phys. Chem. C, 2016, vol. 120, pp. 3176−3186.

    Article  CAS  Google Scholar 

  42. Mabuchi, T. and Tokumasu, T., J. Phys. Chem. B, 2018, vol. 122, pp. 5922–5932. https://doi.org/10.1021/acs.jpcb.8b02318

    Article  CAS  PubMed  Google Scholar 

  43. Weichselbaum, E., Galimzyanov, T., Batishchev, O.V., and Akimov, S.A., Pohl P. Biomolecules, 2023, no. 13(2), p. 352. https://doi.org/10.3390/biom13020352.PMID:

    Article  CAS  PubMed  Google Scholar 

  44. Hammett, L.P., Physical Organic Chemistry, New York, 1940.

  45. Jorgenson, M.J. and Hartter, D.R., J. Am. Chem. Soc., 1963, vol. 85, pp. 878−883. https://doi.org/10.1021/ja00890a009

    Article  CAS  Google Scholar 

  46. Robertson, E.B. and Dunford, H.B., J. Am. Chem. Soc., 1964, vol. 86, no. 23, pp. 5080–5089. https://doi.org/10.1021/ja01077a007

    Article  CAS  Google Scholar 

  47. Vinnik, M.I., Usp. Khim., 1966, vol. 35, pp. 1922–1952.

    Article  CAS  Google Scholar 

  48. Rochester, C.H., Acidity Functions, New York: Acad. Press, 1970.

  49. Johnson, C.D., Katritzky, A.R., and Shapiro, S.A., J. Am. Chem. Soc., 1969, vol. 91, pp. 6654–6652. https://doi.org/10.1021/ja01052a021

    Article  CAS  Google Scholar 

  50. Bates, R.G., Determination of pH. Theory and Practice, New York: John Wiley & Sons, 1964.

  51. Bell, R.P., The Proton in Chemistry, London: Chapman and Hall, 1973.

  52. Himmel, D., Goll, S.K., Leito, I., and Krossing, I., Angew. Chem. Int. Ed., 2010, vol. 49, pp. 6885–6888. https://doi.org/10.1002/anie.201000252

    Article  CAS  Google Scholar 

  53. Scorrano, G. and More OFerrall, R., J. Phys. Org. Chem., 2013, no. 26, pp. 1009–1015. https://doi.org/10.1002/poc.3171

    Article  CAS  Google Scholar 

  54. Popkova, I.A. and Kozlov, V.A., Izv. Vuzov, Ser. Khim. Khim. Tekhnol., 1986, vol. 29, no. 2, pp. 29–33

    CAS  Google Scholar 

  55. Epshtejn, L.M. and Iogansen, A.V., Usp. Khim., 1990, vol. 59, no. 2, pp. 229–257.

    Google Scholar 

  56. Oliferenko, P.V., Oliferenko, A.A., Poda, G., Palyulin, V.A., Zefirov, N.S., and Katritzky, A.R., J. Chem. Inform. Model., 2009, vol. 49, no. 3, pp. 634–646. https://doi.org/10.1021/ci800323q

    Article  CAS  Google Scholar 

  57. Uchnevich, G.V., Tarakanova, E.G., Mayorov, V.D., and Librovich, N.B., Russ. Chem. Rev., 1995, vol. 64, pp. 901–911. https://doi.org/10.1070/RC1995v064n10ABEН000183

    Article  Google Scholar 

  58. Palascak, M.W. and Shields, G.C., J. Phys. Chem. A, 2004, vol. 108, pp. 3692–3694. https://doi.org/10.1021/jp049914o

    Article  CAS  Google Scholar 

  59. Camaioni, D.M. and Schwerdtfege, Ch.A., J. Phys. Chem. A, 2005, vol. 109, pp. 10795–10797. https://doi.org/10.1021/jp054088k

    Article  CAS  PubMed  Google Scholar 

  60. Tarakanova, E.G., Yukhnevich, G.V., and Librovich, N.B., Khim. Fiz., 2005, vol. 24, no. 6, p. 44.

    CAS  Google Scholar 

  61. Headrick, J.M., Science, 2005, vol. 308, pp. 1765–1769. https://doi.org/10.1126/science.1113094

  62. Kelly, C.P., Cramer, Ch.J., and Truhlar, D.G., J. Phys. Chem. B, 2006, vol. 110, pp. 16066–16081. https://doi.org/10.1021/jp063552y

    Article  CAS  PubMed  Google Scholar 

  63. Markovitch, O. and Agmon, N., J. Phys. Chem. A, 2007, vol. 111, no. 12, pp. 2253–2256. https://doi.org/10.1021/jp068960g

    Article  CAS  PubMed  Google Scholar 

  64. Park, M., Shin, I., Singh, N.J., and Kim, K.S., J. Phys. Chem. A, 2007, vol. 111, pp. 10692−10702. https://doi.org/10.1021/jp073912x

    Article  CAS  PubMed  Google Scholar 

  65. Wang, F., Izvekov, S., and Voth, G.A., J. Am. Chem. Soc., 2008, vol. 130, no. 10, pp. 3120–3126. https://doi.org/10.1021/ja078106i

    Article  CAS  PubMed  Google Scholar 

  66. Vener, M.V. and Librovich, N.B., Intern. Rev. Phys. Chem., 2009, vol. 28, pp. 407–434. https://doi.org/10.1080/01442350903079955

    Article  CAS  Google Scholar 

  67. Swanson, J.M.J. and Simons, J., J. Phys. Chem. B, 2009, vol. 113, pp. 5149−5161. https://doi.org/10.1021/jp810652v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Librovich, N.B., Kislina, I.S., and Tarakanova, E.G., J. Phys. Chem., 2009, vol. 3, pp. 136–139. https://doi.org/10.1134/S1990793109010217

    Article  Google Scholar 

  69. Stoyanov, E.S., Stoyanova, I.V., and Reed, C.A., J. Am. Chem. Soc., 2010, vol. 132, pp. 1484–1485. https://doi.org/10.1021/ja9101826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stoyanov, E.S. and Stoyanova, I.V., Reed, C.A., Chem. Sci., 2011, pp. 462–472. https://doi.org/10.1039/C0SC00415D

  71. Kulig, W. and Agmon, N.J., J. Phys. Chem. B, 2014, vol. 118, pp. 278–286. https://doi.org/10.1021/jp410446d

    Article  CAS  PubMed  Google Scholar 

  72. Meraj, G. and Chaudhari, A., J. Mol. Liq., 2014, vol. 190, pp. 1–5. https://doi.org/10.1016/j.molliq.2013.10.006

    Article  CAS  Google Scholar 

  73. Yu, Q. and Bowman, J.M., J. Am. Chem. Soc., 2017, vol. 139, pp. 10984–10987. https://doi.org/10.1021/jacs.7b05459

    Article  CAS  PubMed  Google Scholar 

  74. Bednyakov, A.S., Stepanov, N.F., and Novakovskaya, Yu.V., Russ. J. Phys. Chem. A, 2014, vol. 88, pp. 287–294. https://doi.org/10.1134/S0036024414010051

    Article  CAS  Google Scholar 

  75. Thämer, M., De Marco, L., Ramasesha, K., Mandal, A., and Tokmakoff, A., Science, 2015, vol. 350, pp. 78–82. https://doi.org/10.1126/science.aab3908

    Article  CAS  PubMed  Google Scholar 

  76. Fournier, J.A., Carpenter, W.B., Lewis, N.H.C., and Tokmakoff, A., Nature Chemistry, 2018, vol. 10, pp. 932–937. https://doi.org/10.1038/s41557-018-0091-yi

    Article  CAS  PubMed  Google Scholar 

  77. Biswas, R. and Voth, G.A., J. Chem. Sci., 2017, vol. 129, pp. 1045–1051. https://doi.org/10.1007/s12039-017-1283-5

    Article  CAS  Google Scholar 

  78. Zeng, Y., Li, A., and Yan, T., J. Phys. Chem. B, 2020, vol. 124, no. 9, pp. 1817–1823. https://doi.org/10.1021/acs.jpcb.0c00990

    Article  CAS  PubMed  Google Scholar 

  79. Ryding, M.J., Izsák, R., Merlot, P., Reine, S., Helgaker, T., and Uggerud, E., Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 5466–5473. https://doi.org/10.1039/c4cp05246c

    Article  CAS  PubMed  Google Scholar 

  80. Siwick, B.J. and Bakker, H.J., J. Am. Chem. Soc., 2007, vol. 129, no. 44, pp. 13412–13420. https://doi.org/10.1021/ja069265p

    Article  CAS  PubMed  Google Scholar 

  81. Pettersson, L.G.M., Henchman, R.H., and Nilsson, A., Chem. Rev., 2016, vol. 116, pp. 459–462. https://doi.org/10.1021/acs.chemrev.6b00363

    Article  CAS  Google Scholar 

  82. Lockwood, G.K. and Garofalini, S.H., J. Phys. Chem. B, 2013, vol. 117, pp. 4089−4097. https://doi.org/10.1021/jp310300x

    Article  CAS  PubMed  Google Scholar 

  83. Kazansky, V.B., Catalysis Today, 2002, vol. 73, pp. 127–137. https://doi.org/10.1016/S0920-5861(01)00506-5

    Article  CAS  Google Scholar 

  84. Park, M., Shin, I., Singh, N.J., and Kim, K.S., J. Phys. Chem. A, 2007, vol. 111, no. 42, pp. 10692– 702. https://doi.org/10.1021/jp073912x

    Article  CAS  PubMed  Google Scholar 

  85. Buch, V., Dubrovskiy, A., Mohamed, F., Parrinello, M., Sadlej, J., Hammerich, A.D., and Devlin, J.P., J. Phys. Chem. A, 2008, vol. 112, pp. 2144–2161. https://doi.org/10.1021/jp076391m

    Article  CAS  PubMed  Google Scholar 

  86. Fulton, J.L. and Balasubramanian, M., J. Am. Chem. Soc., 2010, vol. 132, no. 36, pp. 12597–12604. https://doi.org/10.1021/ja1014458

    Article  CAS  PubMed  Google Scholar 

  87. Lin, W. and Paesani, F., J. Phys. Chem. A, 2013, vol. 117, no. 32, pp. 7131–714. https://doi.org/10.1021/jp400629t

    Article  CAS  PubMed  Google Scholar 

  88. Ivanov, S.N., Gnedin, B.G., Zh. Org. Khim., 1989, vol. 25, no. 4, pp. 831–835.

    CAS  Google Scholar 

  89. Shilov, E.A., Kinet. Katal, 1938, vol. I8, no. 9, pp. 643–648.

    Google Scholar 

  90. Ivanov, S.N., Kislov, V.V., and Gnedin, B.G., Russ. J. Gen. Chem., 2004, vol. 74, no. 1, 2004, pp. 86–94. https://doi.org/10.1023/B:RUGC.0000025174.83443

  91. Ivanov, S.N., Mikhajlov, A.V., Gnedin, B.G., Lebedukho, A.Yu., and Korolev, V.P., Kinet. Katal., 2005, vol. 46, no. 1, pp. 35–43. https://doi.org/10.1007/PL00021981

    Article  Google Scholar 

  92. Ivanov, S.N., Kislov, V.V., and Gnedin, B.G., Russ. J. Gen. Chem., 2004, vol. 74, no. 1, pp. 95–100.

    Article  CAS  Google Scholar 

  93. Ivanov, S.N., Mikhajlov, A.V., Gnedin, B.G., and Korolev, V.P., Zh. Fiz. Khim., 2004, vol. 78, no. 4, pp. 615–621.

    CAS  Google Scholar 

  94. Leopold, K.R., Ann. Rev. Phys. Chem., 2011, vol. 62, pp. 327–349. https://doi.org/10.1146/annurev-physchem-032210-103409

    Article  CAS  Google Scholar 

  95. Fraenkel, D., J. Phys. Chem. B, 2012, vol. 116, pp. 11662–11677. https://doi.org/10.1021/jp3060334

    Article  CAS  PubMed  Google Scholar 

  96. Fraenkel, D., J. Phys. Chem. B, 2012, vol. 116, pp. 11678–11686. https://doi.org/10.1021/jp306042q

    Article  CAS  Google Scholar 

  97. Thaunay, F., Hassan, A.A., Cooper, R.J., Williams, E.R., Clavaguera, C., and Ohanessian, G., Int. J. Mass Spectr., 2017, vol. 418, pp. 15–23. https://doi.org/10.1016/j.ijms.2017.01.005

    Article  CAS  Google Scholar 

  98. Blades, A.T. and Kebarle, P., J. Phys. Chem. A, 2005, vol. 109, pp. 8293–8298. https://doi.org/10.1021/jp0540353

    Article  CAS  PubMed  Google Scholar 

  99. Kulichenko, M., Fedik, N., Bozhenko, K.V., Boldyrev, A.I., J. Phys. Chem. B, 2019, vol. 123, pp. 4065–4069. https://doi.org/10.1021/acs.jpcb.9b01744

    Article  CAS  PubMed  Google Scholar 

  100. Bing, G. and Zhi–feng, L., J. Chem. Phys., 2005, vol. 123, pp. 224302. https://doi.org/10.1063/1.2134698

    Article  CAS  Google Scholar 

  101. Kozlov, V.A., Bagrovskaya, N.A., and Berezin, B.D., Izv. Vuzov SSSR, Khim Khim. Tekhnol., 1985, vol. 28, no. 2, pp. 34–37.

    CAS  Google Scholar 

  102. Dupont, D., Raiguel, S., and Binnemansa, K., Chem. Commun., 2015, vol. 51, pp. 9006–9009 https://doi.org/10.1039/C5CC02731D

    Article  CAS  Google Scholar 

  103. Shan, W., Yang, Q., Su, B., Bao, Z., Ren, Q., and Xing, H., J. Phys. Chem. C, 2015, vol. 119, pp. 20379–20388. https://doi.org/10.1021/acs.jpcc.5b02814

    Article  CAS  Google Scholar 

  104. Cox, R.A., Adv. Phys. Org. Chem., 2000, no. 35, pp. 1–66. ISBN 0-12-033535-2

    Google Scholar 

  105. Cox, R.A. and Yates, K., Can. J. Chem., 1981, vol. 59, pp. 2116–2124. https://doi.org/10.1139/v81-306

    Article  CAS  Google Scholar 

  106. Ivanov, S.N., Gnedin, B.G., and Shhukina, M.V., Zh. Org. Khim., 1990, vol. 26, no. 4, pp. 1415–1422.

    CAS  Google Scholar 

  107. Popkova, I.A. and Kozlov, V.А., Zh. Obshch. Khim., 1988, vol. 58, pp. 877–880.

    CAS  Google Scholar 

  108. Fadeeva, Y.A., Nikolaeva, A.V., Safonova, L.P., J. Mol. Liq., 2014, vol. 193, pp. 1–5. https://doi.org/10.1016/j.molliq.2013.12.010

    Article  CAS  Google Scholar 

  109. Bentley, T.W., Can. J. Chem., 2008, vol. 86, pp. 277–280. https://doi.org/10.1139/V08-003

    Article  CAS  Google Scholar 

  110. Cox, R.A., Can. J. Chem., 2012, vol. 90, pp. 811–818. https://doi.org/10.1139/v2012-060

    Article  CAS  Google Scholar 

  111. Marcus, Y., Ions in Water and Biophysical Implications, Dordrecht: Springer Science + Business Media, 2012. https://doi.org/10.1007/978-94-007-4647-3

  112. Yates, K. and Wai, H., J. Am. Chem. Soc., 1964, vol. 86, pp. 5408–5413. https://doi.org/10.1021/ja01078a008

    Article  CAS  Google Scholar 

  113. Alongi, K.S. and Shields, G.C., Comp. Chem., 2010, vol. 6. https://doi.org/10.1016/S1574-1400(10)06008-1

  114. Walrafen, G.E., Yang, W.H., Chu, Y.C., Hokmabadi, M.S., J. Sol. Chem., 2000, vol. 29, pp. 905–936. https://doi.org/10.1023/A:1005134717259

    Article  CAS  Google Scholar 

  115. Ivanov, S.N., Kozlov, V.A., Vestn. IvGU, Matematika, Biologiya. Khimiya, 2022. N. 2, pp. 34–40.

  116. Erokhina, E., Dymnikova, N., and Moryganov, A., Ross. Khim. Zh., 2022, vol. 66(4), pp. 6–13. https://doi.org/10.6060/rcj.2022664.1

    Article  Google Scholar 

  117. Genis, A. and Kuznetsov, A., Ross. Khim. Zh., 2020, vol. 63(1), pp. 27–45. https://doi.org/10.6060/rcj.2019631.2

    Article  Google Scholar 

  118. Meretin, R.N. and Nikiforova, Т.E., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2021, vol. 64, no. 11, pp. 117–125. https://doi.org/10.6060/ivkkt.20216411.6408

    Article  CAS  Google Scholar 

  119. Drogobuzhskaya, S.V., Shirokaya, A.A., and Solov’ev, S.A., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2019, vol. 62, no. 11, pp. 117–125. https://doi.org/10.6060/ivkkt.20196211.5982

    Article  CAS  Google Scholar 

  120. Cao Nhat Linh, Zyablov, A.N., Duvanova, O.V., and Selemenev, V.F., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2020, vol. 63, no. 2, pp. 71–76. https://doi.org/10.6060/ivkkt.20206302.6071

    Article  CAS  Google Scholar 

  121. Cw—stoichiometric water concentration (analytical concentration of H2O in a two-component H2O/HA system, expressed in mol/L and reduced to normal conditions).

  122. The state of pure solvent (water) at 298.15 K is taken as the standard state of water (C0w = 1000 cm3·0.99705 g/cm3/ 18.01153 g/mol = 55.34462mol; log C0w = 1.74308).

  123. The activity of water is the result of its corrected concentration on the activity coefficient, which takes into account a decrease in the vapor pressure of water over an acid solution compared with the vapor pressure over clean water and, in turn, an supposed decrease in its real concentration due to the formation of H-bonds with an excess proton and other ions of the medium.

  124. In the case of sulfuric acid, parameter B reflects the total effect of the anions: HSO4 and the doubly charged anion SO42–, which reaches a maximum concentration of 56% H2SO4.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Ivanov or V. A. Kozlov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, S.N., Kozlov, V.A., Nikiforova, T.E. et al. Hydrate-Anion Complex of Proton [H(H2O)n]+А as the Basis of the Complex Acidity Function Н0w of Aqueous Solutions of Strong Mineral Acids in Excess of Water. Russ J Gen Chem 93, 3207–3223 (2023). https://doi.org/10.1134/S1070363223120216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223120216

Keywords:

Navigation