Skip to main content
Log in

Tuning the Selectivity and Activity of Graphite for the Two-Electron Water Oxidation Reaction via Doping with Heteroatoms: A Density Functional Theory Study

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The effects of heteroatoms doping and defects on the selectivity and activity of graphite for hydrogen peroxide evolution via the two-electron water oxidation reaction (2e WOR) were investigated by density functional theory calculations. The results show that the activation of H2O to form OH* is severely difficult on the pristine graphite, leading to unsatisfactory selectivity and activity for H2O2 formation. In general, the doping of boron and nitrogen and the introduction of defects are positive for improving the selectivity and activity of graphite for the 2e WOR. In contrast, the doping of phosphorus and sulfur bring negative effects for graphite towards H2O2 evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Xue, Y., Wang, Y., Pan, Z., and Sayama, K., Angew. Chem. Int. Ed., 2021, vol. 60, no. 19, p. 10469. https://doi.org/10.1002/anie.202011215

    Article  CAS  Google Scholar 

  2. Sun, Y., Han, L., and Strasser, P., Chem. Soc. Rev., 2020, vol. 49, no. 18, p. 6605. https://doi.org/10.1039/d0cs00458h

    Article  CAS  PubMed  Google Scholar 

  3. Ye, H.Y., Yang, L., Nie, X.Q., Liu, K., Yang, S., Zhou, Y., Dong, F.Q., He, H.C., and Yang, H.M., Electrochim. Acta, 2021, vol. 394, p. 139122. https://doi.org/10.1016/j.electacta.2021.139122

    Article  CAS  Google Scholar 

  4. Li, L., Xiao, K., Wong, P.K., Hu, Z., and Yu, J.C., ACS Appl. Mater. Interfaces, 2022, vol. 14, no. 6, p. 7878. https://doi.org/10.1021/acsami.1c20834

    Article  CAS  PubMed  Google Scholar 

  5. Xia, C., Back, S., Ringe, S., Jiang, K., Chen, F.H., Sun, X.M., Siahrostami, S., Chan, K., and Wang, H.T., Nat. Catal., 2020, vol. 3, no. 2, p. 125. https://doi.org/10.1038/s41929-019-0402-8

    Article  CAS  Google Scholar 

  6. Shi, X., Siahrostami, S., Li, G.L., Zhang, Y., Chakthranont, P., Studt, F., Jaramillo, T.F., Zheng, X., and Norskov, J.K., Nat. Commun., 2017, vol. 8, no. 1, p. 701. https://doi.org/10.1038/s41467-017-00585-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mavrikis, S., Göltz, M., Perry, S.C., Bogdan, F., Leung, P.K., Rosiwal, S., Wang, L., and Ponce de León, C., ACS Energy Lett., 2021, vol. 6, no. 7, p. 2369. https://doi.org/10.1021/acsenergylett.1c00904

    Article  CAS  Google Scholar 

  8. Pangotra, D., Csepei, L.I., Roth, A., Sieber, V., and Vieira, L., Green Chem., 2022, vol. 24, no. 20, p. 7931. https://doi.org/10.1039/d2gc02575b

    Article  CAS  Google Scholar 

  9. Guo, W. L., Wang, S.S., Xie, Y.Q., Fang, C., Liu, L.L., Lou, Q., Lian, X., and Henkelman, G., ACS Sustain. Chem. Eng., 2023, vol. 11, no. 32, p. 12114. https://doi.org/10.1021/acssuschemeng.3c03031

    Article  CAS  Google Scholar 

  10. Wenderich, K., Nieuweweme, B.A.M., Mul, G., and Mei, B.T., ACS Sustain. Chem. Eng., 2021, vol. 9, no. 23, p. 7803. https://doi.org/10.1021/acssuschemeng.1c01244

    Article  CAS  Google Scholar 

  11. Zhang, C., Lu, J., Liu, C., Zou, Y., Yuan, L., Wang, J., and Yu, C., Environ. Res., 2022, vol. 206, p. 112290. https://doi.org/10.1016/j.envres.2021.112290

    Article  CAS  PubMed  Google Scholar 

  12. Inagaki, M., Toyoda, M., Soneda, Y., and Morishita, T., Carbon, 2018, vol. 132, p. 104. https://doi.org/10.1016/j.carbon.2018.02.024

    Article  CAS  Google Scholar 

  13. Kresse, G. and Hafner, J., Phys. Rev. (B), 1993, vol. 47, no. 1, p. 558. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  14. Kresse, G. and Hafner, J., Phys. Rev. (B), 1994, vol. 49, no. 20, p. 14251. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  15. Blöchl, P.E., Phys. Rev. (B), 1994, vol. 50, no. 24, p. 17953. https://doi.org/10.1103/PhysRevB.50.17953

  16. Kresse, G. and Joubert, D., Phys. Rev. (B), 1999, vol. 59, no. 3, p. 1758. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  17. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  18. Kresse, G. and Furthmüller, J., Phys. Rev. (B), 1996, vol. 54, no. 16, p. 11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  19. Monkhorst, H.J., and Pack, J.D., Phys. Rev. (B), 1976, vol. 13, no. 12, p. 5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  20. Siahrostami, S.G., Li, L., Viswanathan, V., and Norskov, J.K., J. Phys. Chem. Lett., 2017, vol. 8, no. 6, p. 1157. https://doi.org/10.1021/acs.jpclett.6b02924

    Article  CAS  PubMed  Google Scholar 

  21. Kelly, S.R., Shi, X.J., Back, S., Vallez, L., Park, S.Y., Siahrostami, S., Zheng, X.L., and Nørskov, J.K., ACS Catal., 2019, vol. 9, no. 5, p. 4593. https://doi.org/10.1021/acscatal.8b04873

    Article  CAS  Google Scholar 

  22. Ivanova, A., Chesnokov, A., Bocharov, D., and Exner, K.S., J. Phys. Chem. (C), 2021, vol. 125, no. 19, p. 10413. https://doi.org/10.1021/acs.jpcc.1c03323

    Article  CAS  Google Scholar 

  23. Wei, Y.Q., Liao, A.Z., Zhu, W.W., Hou, W.T., Zhang, Y.C., Zheng, Y.B., Zhou, B.Y., Yan, Y.X., He, H.C., Zhou, X., Zhou, Y., and Zou, Z.G., Chem. Eng. J., 2023, vol. 473, p. 145384. https://doi.org/10.1016/j.cej.2023.145384

    Article  CAS  Google Scholar 

  24. Ke, G.L., Jia, B., He, H.C., Zhou, Y., and Zhou, M., Rare Metals, 2022, vol. 41, p. 2370. https://doi.org/10.1007/s12598-022-01968-5

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the Texas Advanced Computing Center for computational resources.

Funding

This work was supported by Chongqing Innovation Research Group Project (no. CXQT21015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Guo or Y. Zhou.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Tang, S., Guo, W. et al. Tuning the Selectivity and Activity of Graphite for the Two-Electron Water Oxidation Reaction via Doping with Heteroatoms: A Density Functional Theory Study. Russ J Gen Chem 93, 3183–3187 (2023). https://doi.org/10.1134/S1070363223120186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223120186

Keywords:

Navigation