Skip to main content
Log in

Current Developments of Pyrrolo[2,3-d]pyrimidines with Anticancer Potential (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Anticancer chemotherapeutics are effective weapons for cancer therapy, but the continuous emergency of multidrug-resistant cancer and the side effects of current available anticancer chemotherapeutics are the major obstacles in the control and eradication of cancers. Pyrrolo[2,3-d]pyrimidines could inhibit signal transduction cascades affecting cell proliferation, migration, and angiogenesis, representing privileged scaffolds for the discovery of novel anticancer candidates. This review highlighted the recent developments of pyrrolo[2,3-d]pyrimidines with anticancer potential and discussed mechanisms of action, covering papers published from 2018 to present, to facilitate further rational design of more effective candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Hulvat, M.C., Surg. Clin. N. Am., 2020, vol. 100, p. 469. https://doi.org/10.1016/j.suc.2020.01.002

    Article  PubMed  Google Scholar 

  2. Kelley, K.D. and Aronowitz, P., Med. Clin. N. Am., 2022, vol. 106, p. 411. https://doi.org/10.1016/j.mcna.2021.12.006

    Article  PubMed  Google Scholar 

  3. Santucci, C., Carioli, G., Bertuccio, P., Malvezzi, M., Pastorino, U., Boffetta, P., Negri, E., Bosetti, C., and Vecchia, C., Eur. J. Cancer Prevent., 2020, vol. 29, p. 367. https://doi.org/10.1097/CEJ.0000000000000594

    Article  Google Scholar 

  4. Siegel, R.L., Miller, K.D., Wagle, N.S., and Jemal, A., CA Cancer J. Clin., 2023, vol. 73, no. 1, p. 17. https://doi.org/10.3322/caac.21763

    Article  PubMed  Google Scholar 

  5. Yalcin-Ozkat, G., Drug Resist. Updates, 2021, vol. 59, p. e100789. https://doi.org/10.1016/j.drup.2021.100789

  6. Emran, T.B., Shahriar, A., Mahmud, A.R., Rahman, T., Abir, M.H., Siddiquee, M.F.R., Ahmed, Ho., Islam, A., and Hassan, M.M., Front. Oncol., 2022, vol. 12, p. e891652. https://doi.org/10.3389/fonc.2022.891652

  7. Pathania, S. and Rawal, R.K., Eur. J. Med. Chem., 2018, vol. 157, p. 503. https://doi.org/10.1016/j.ejmech.2018.08.023

    Article  CAS  PubMed  Google Scholar 

  8. Rani, I., Kaur, N., Goyal, A., and Sharma, M., Anti-Cancer Agents Med. Chem., 2023, vol. 23, p. 525. https://doi.org/10.2174/1871520622666220701113204

    Article  CAS  Google Scholar 

  9. Gilson, P., Couvet, M., Vanwonterghem, L., Henry, M., Vollaire, J., Baulin, V., Werner, M., Busser, B., and Hurbin, A., Biochem. Pharm., 2019, vol. 160, p. 1. https://doi.org/10.1016/j.bcp.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  10. Yang, M., Jiang, H., Yang, Z., Liu, X., Sun, H., Hao, M., Hu, J., Chen, X., Jin, J., and Wang, X., Eur. J. Med. Chem., 2022, vol. 241, p. e114611. https://doi.org/10.1016/j.ejmech.2022.114611

  11. Chen, X., Guo, K., Liu, Y., Ran, F., Zhang, Z., and Zhao, G., Bioorg. Chem., 2020, vol. 97, p. e103671. https://doi.org/10.1016/j.bioorg.2020.103671

  12. Wang, R., Zhao, X., Yu, S., Chen, Y., Cui, H., Wu, T., Hao, C., Zhao, D., and Cheng, M., Bioorg. Chem., 2020, vol. 102, p. e104092. https://doi.org/10.1016/j.bioorg.2020.104092

  13. Li, Y., Du, R., Nie, Y., Wang, T., Ma, Y., and Fan, Y., Bioorg. Chem., 2021, vol. 109, p. e104717. https://doi.org/10.1016/j.bioorg.2021.104717

  14. Wang, C., Xia, J., Lei, Y., Lu, R., Zhang, M., Lv, H., Hong, Q., Lu, T., Chen, Y., and Li, H., Bioorg. Med. Chem., 2022, vol. 60, p. e116700. https://doi.org/10.1016/j.bmc.2022.116700

  15. Tian, C., Han, Z., Li, Y., Wang, M., Yang, J., Wang, X., Zhang, Z., and Liu, J., Eur. J. Med. Chem., 2018, vol. 151, p. 836. https://doi.org/10.1016/j.ejmech.2018.03.075

    Article  CAS  PubMed  Google Scholar 

  16. Wang, L., Zhang, Y., Zhang, Q., Zhu, G., Zhang, Z., Duan, C., Lu, T., and Tang, W., Eur. J. Med. Chem., 2019, vol. 163, p. 243. https://doi.org/10.1016/j.ejmech.2018.11.033

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, C., Pei, H., He, J., Zhu, J., Li, W., Niu, T., Xiang, M., and Chen, L., Eur. J. Med. Chem., 2019, vol. 169, p. 121. https://doi.org/10.1016/j.ejmech.2019.02.077

    Article  CAS  PubMed  Google Scholar 

  18. Wang, R., Chen, Y., Zhao, X., Yu, S., Yang, B., Wu, T., Guo, J., Hao, C., Zhao, D., and Cheng, M., Eur. J. Med. Chem., 2019, vol. 183, p. e111716. https://doi.org/10.1016/j.ejmech.2019.111716

  19. Tan, H., Liu, Y., Gong, C., Zhang, J., Huang, J., and Zhang, Q., Eur. J. Med. Chem., 2021, vol. 223, p. e113670. https://doi.org/10.1016/j.ejmech.2021.113670

  20. Xia, Z., Huang, R., Zhou, X., Chai, Y., Chen, H., Ma, L., Yu, Q., Li, Y., Li, W., and He, Y., Eur. J. Med. Chem., 2021, vol. 224, p. e113711. https://doi.org/10.1016/j.ejmech.2021.113711

  21. Mao, L., Tang, W., Zhang, X., Liu, J., Chen, Y., Hua, Y., Weng, B., Wang, X., and Xu, X., Med. Drug Discov., 2020, vol. 6, p. e100035. https://doi.org/10.1016/j.medidd.2020.100035

  22. Wei, W., Feng, Z., Liu, Z., Li, X., He, H., Ran, K., Shi, Y., Wang, N., and Yu, L., Eur. J. Med. Chem., 2022, vol. 228, p. e113978. https://doi.org/10.1016/j.ejmech.2021.113978

  23. Liang, X., Wang, C., Wang, B., Liu, J., Qi, S., Wang, A., Liu, Q., Liu, J., and Liu, Q., Eur. J. Med. Chem., 2022, vol. 243, p. e114782. https://doi.org/10.1016/j.ejmech.2022.114782

  24. Song, Z., Lou, L., Fan, G., Liu, L., Ge, Y., Liu, H., Chan, A.S.C., Zhang, X., and Xiong, X.F., Eur. J. Med. Chem., 2023, vol. 245, p. e114907. https://doi.org/10.1016/j.ejmech.2022.114907

  25. Lee, J.H., El-Damasy, A.K., Seo, S.H., Gadhe, C.G., Pae, A.N., Jeong, N., Hong, S.S., and Keum, G., Bioorg. Med. Chem., 2018, vol. 26, p. 5596. https://doi.org/10.1016/j.bmc.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  26. Harsha, K.B., Swaroop, T.R., Roopashree, R., Jagadish, S., and Rangappa, K.S., Chem. Data Collect., 2018, vols. 15–16, p. 223. https://doi.org/10.1016/j.cdc.2018.06.004

    Article  Google Scholar 

  27. Kurup, S., McAllister, B., Liskova, P., Mistry, T., Fanizza, A., Stanford, D., Slawska, J., Keller, U., and Hoellein, A., J. Enzym. Inhib. Med. Chem., 2018, vol. 33, p. 74. https://doi.org/10.1080/14756366.2017.1376666

    Article  CAS  Google Scholar 

  28. Lee, Y., Kim, H., Kim, H., Cho, H.Y., Jee, J.G., Seo, K.A., Son, J.B., Kim, N.D., and Kim, I., J. Med. Chem., 2021, vol. 64, p. 6985. https://doi.org/10.1021/acs.jmedchem.1c00542

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, J., Zhang, D., Zhang, W., Stashko, M.A., Deryckere, D., Vasileiadi, E., Parker, R.E., Frye, S.V., and Wang, X., J. Med. Chem., 2018, vol. 61, p. 10242. https://doi.org/10.1021/acs.jmedchem.8b01229

    Article  CAS  PubMed  Google Scholar 

  30. Riggs, J.R., Elsner, J., Cashion, D., Robinson, D., Tehrani, L., Nagy, M., Fultz, K. E., Zhu, D., and Boylan, J.F., J. Med. Chem., 2019, vol. 62, p. 4401. https://doi.org/10.1021/acs.jmedchem.8b01869

    Article  CAS  PubMed  Google Scholar 

  31. Mathison, C.J.N., Yang, Y., Nelson, J., Huang, Z., Jiang, J., Chianelli, D., Rucker, P.V., Molteni, V., and Tellew, J.E., ACS Med. Chem. Lett., 2021, vol. 12, p. 1912. https://doi.org/10.1021/acsmedchemlett.1c00450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsai, P.Y., Hu, G.S., Huang, P.H., Jheng, H.L., Lan, C.H., Chen, Y.S., Chang, J.M., Chuang, S.H., and Huang, J.J., J. Chin. Chem. Soc., 2021, vol. 68, p. 1761. https://doi.org/10.1002/jccs.202100100

    Article  CAS  Google Scholar 

  33. Singh, A., Chang, T.Y., Kaur, N., Hsu, K.C., Yen, Y., Lin, T.E., Lai, M.J., Lee, S.B., and Liou, J.P., Eur. J. Med. Chem., 2021, vol. 215, p. e113169. https://doi.org/10.1016/j.ejmech.2021.113169

  34. Sivaiah, G., Raveesha, R., Prasad, S.B.B., Kumar, K.Y., Raghu, M.S., Alharti, F.A., Prashanth, M.K., and Jeon, B.H., J. Mol. Struct., 2023, vol. 1275, p. e134728. https://doi.org/10.1016/j.molstruc.2022.134728

  35. Dholakia, S.P., Kanada, K.B., Sureja, D.K., and Patel, J.S., Indian J. Heterocycl. Chem., 2019, vol. 29, p. 367.

    CAS  Google Scholar 

  36. Lategahn, J., Keul, M., Klövekorn, P., Tumbrink, H.L., Niggenaber, J., Müller, M. P., Hodson, L., Bauer, S., and Rauh, D., Chem. Sci., 2019, vol. 10, p. 10789. https://doi.org/10.1039/C9SC03445E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y.M., Chen, C.H., Yeh, T.K., and Liou, J.P., Future Med. Chem., 2019, vol. 11, p. 959. https://doi.org/10.1016/j.bmcl.2020.127740

    Article  CAS  PubMed  Google Scholar 

  38. Cawrse, B.M., Lapidus, R.S., Cooper, B., Choi, E.Y., and Seley-Radtke, K.L., ChemMedChem, 2018, vol. 13, p. 178. https://doi.org/10.1002/cmdc.201700641

    Article  CAS  PubMed  Google Scholar 

  39. Liang, X., Tang, S., Liu, X., Liu, Y., Xu, Q., Wang, X., Saidahmatov, A., Huang, M., and Liu, H., J. Med. Chem., 2022, vol. 65, p. 1243. https://doi.org/10.1021/acs.jmedchem.0c02111

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y., Zhi, Y., Jin, Q., Lu, S., Lin, G., Yuan, H., Yang, T., Chen, Y., and Lu, T., J. Med. Chem., 2018, vol. 61, p. 1499. https://doi.org/10.1021/acs.jmedchem.7b01261

    Article  CAS  PubMed  Google Scholar 

  41. Tian, L., Li, X., Lv, Z., Yang, Y., Wang, L., Xu, D., Ma, X., and Xu, Y., Bioorg. Med. Chem., 2022, vol. 74, p. e117052. https://doi.org/10.1016/j.bmc.2022.117052

  42. Wang, R., Zhao, X., Yu, S., Chen, Y., Cui, H., Wu, T., Hao, C., Zhao, D., and Cheng, M., Bioorg. Chem., 2020, vol. 102, p. e104092. https://doi.org/10.1016/j.bioorg.2020.104092

  43. Li, X., Wei, W., Tao, L., Zeng, J., Zhu, Y., Yang, T., Wang, Q., Tang, M., Liu, Z., and Yu, L., Eur. J. Med. Chem., 2023, vol. 245, p. e114887. https://doi.org/10.1016/j.ejmech.2022.114887

  44. Lakkaniga, N.R., Gunaganti, N., Zhang, L., Belachew, B., Frett, B., Leung, Y.K., and Li, H.Y., Eur. J. Med. Chem., 2020, vol. 206, p. e112691. https://doi.org/10.1016/j.ejmech.2020.112691

  45. Zhao, Y., Zhou, B., Bai, L., Liu, L., Yang, C.Y., Meagher, J.L., Stuckey, J.A., Sun, D., and Wang, S., J. Med. Chem., 2018, vol. 61, p. 6110. https://doi.org/10.1021/acs.jmedchem.8b00483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yuan, X., Chen, Y., Zhang, W., He, J., Lei, L., Tang, M., Liu, J., Ye, H., and Chen, L., J. Med. Chem., 2019, vol. 62, p. 4158. https://doi.org/10.1021/acs.jmedchem.9b00223

    Article  CAS  PubMed  Google Scholar 

  47. Shi, X.J., Wang, S., Li, X.J., Yuan, X.H., Cao, L.J., Yu, B., and Liu, H.M., Eur. J. Med. Chem., 2020, vol. 203, p. e112601. https://doi.org/10.1016/j.ejmech.2020.112601

  48. Thiriveedhi, A., Nadh, R.V., Srinivasu, N., Bobde, Y., Ghosh, B., and Sekhar, K. V.G.C., Toxicol. in Vitro, 2019, vol. 60, p. 87. https://doi.org/10.1016/j.tiv.2019.05.009

    Article  CAS  PubMed  Google Scholar 

  49. Bistrović, A., Grbčić, P., Harej, A., Sedić, M., Kraljević-Pavelić, S., Koštrun, S., Plavec, J., Makuc, D., and Raić-Malić, S., J. Enzym. Inhib. Med. Chem., 2018, vol. 33, p. 271. https://doi.org/10.1080/14756366.2017.1414807

    Article  CAS  Google Scholar 

  50. Zheng, H., Zhao, J., Li, B., Zhang, W., Stashko, M.A., Minson, K.A., Huey, M.G., Frye, S.V. and Wang, X., Eur. J. Med. Chem., 2021, vol. 220, p. e113534. https://doi.org/10.1016/j.ejmech.2021.113534

  51. Shi, X., Quan, Y., Wang, Y., Wang, Y., and Li, Y., Bioorg. Med. Chem. Lett., 2021, vol. 33, p. e127725. https://doi.org/10.1016/j.bmcl.2020.127725

  52. Chen, C., Wang, Y., Hu, M. Q., Li, H., Chen, X., Qiang, G., Sun, Y., Zhu, Y., and Li, B., Bioorg. Med. Chem. Lett., 2022, vol. 75, p. e128973. https://doi.org/10.1016/j.bmcl.2022.128973

  53. Gao, T., Zhang, C., Shi, X., Guo, R., Zhang, K., Gu, J., Li, L., Liu, Y., and Wang, L., Eur. J. Med. Chem., 2019, vol. 178, p. 329. https://doi.org/10.1016/j.ejmech.2019.06.013

    Article  CAS  PubMed  Google Scholar 

  54. Xu, D., Sun, D., Wang, W., Peng, X., Zhan, Z., Ji, Y., Shen, Y., Geng, M., Ai, J., and Duan, W., Eur. J. Med. Chem., 2021, vol. 220, p. e113497. https://doi.org/10.1016/j.ejmech.2021.113497

  55. Tang, G., Liu, L., Wang, X., and Pan, Z., Eur. J. Med. Chem., 2019, vol. 173, p. 167. https://doi.org/10.1016/j.ejmech.2019.03.055

    Article  CAS  PubMed  Google Scholar 

  56. Chen, T., Fu, D., He, J., Tang, Q., Xiong, H., Yang, F., Zhang, J., and Zheng, P., Bioorg. Med. Chem. Lett., 2021, vol. 33, p. e127740. https://doi.org/10.1016/j.bmcl.2020.127740

  57. Zhang, J., Chen, P., Duan, Y., Xiong, H., Li, H., Zeng, Y., Liang, G., Tang, Q., and Wu, D., Eur. J. Med. Chem., 2021, vol. 215, p. e113273. https://doi.org/10.1016/j.ejmech.2021.113273

  58. Sebastiani, J., Puxeddu, M., Nalli, M., Bai, R., Altieri, L., Rovella, P., Gaudio, E., Silvestri, R., and La Regina, G., Eur. J. Med. Chem., 2023, vol. 246, p. e114997. https://doi.org/10.1016/j.ejmech.2022.114997

  59. Wallace-Povirk, A., Rubinsak, L., Malysa, A., Dzinic, S.H., Ravindra, M., Schneider, M., Glassbrook, J., O’Connor, C., Hou, Z., Kim, S., Back, J., Polin, L., Morris, R. T., Gangjee, A., Gibson, H., and Matherly, L.H., Sci. Rep., 2022, vol. 12, p. e11346. https://doi.org/10.1038/s41598-022-14788-5

  60. Ravindra, M., Wilson, M.R., Tong, N., O'Connor, C., Karim, M., Polin, L., Wallace-Povirk, A., Matherly, L.H., and Gangjee, A., J. Med. Chem., 2018, vol. 61, p. 4228. https://doi.org/10.1021/acs.jmedchem.8b00408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, Y., Li, L., Fan, J., Dai, Y., Jiang, A., Geng, M., Ai, J., and Duan, W., J. Med. Chem., 2018, vol. 61, p. 9085. https://doi.org/10.1021/acs.jmedchem.7b01843

    Article  CAS  PubMed  Google Scholar 

  62. Aka, Y., Kilic-Kurt, Z., and Kutuk, O., Chem.-Biol. Interact., 2020, vol. 330, p. e109236. https://doi.org/10.1016/j.cbi.2020.109236

  63. Adel, M., Serya, R.A.T., Lasheen, D.S., and Abouzid, K.A.M., Bioorg. Chem., 2018, vol. 81, p. 612. https://doi.org/10.1016/j.bioorg.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  64. Adel, M. and Abouzid, K.A.M., Bioorg. Chem., 2022, vol. 127, p. e106006. https://doi.org/10.1016/j.bioorg.2022.106006

  65. Wu, X., Liu, Z., Gan, C., Wei, W., Zhang, Q., Liu, H., Que, H., Ouyang, L., and Ye, T., Bioorg. Chem., 2022, vol. 127, p. e105965. https://doi.org/10.1016/j.bioorg.2022.105965

  66. Li, S., Zhao, C., Zhang, G., Xu, Q., Liu, Q., Zhao, W., James C., and Zhang, Y., Bioorg. Chem., 2021, vol. 116, p. e105278. https://doi.org/10.1016/j.bioorg.2021.105278

  67. Wang, X., Yu, C., Wang, C., Ma, Y., Wang, T., Li, Y., Huang, Z., Fan, Y., and Xiang, R., Eur. J. Med. Chem., 2019, vol. 181, p. e111535. https://doi.org/10.1016/j.ejmech.2019.07.038

  68. Khalil, O.M., Kamal, A.M., Bua, S., El Sayed Teba, H., Nissan, Y.M., and Supuran, C.T., Eur. J. Med. Chem., 2020, vol. 188, p. e112021. https://doi.org/10.1016/j.ejmech.2019.112021

  69. Yang, B., Quan, Y., Zhao, W., Ji, Y., Yang, X., Li, J., Li, Y., Liu, X., Wang, Y., and Li, Y., J. Enzym. Inhib. Med. Chem., 2023, vol. 38, p. e2169282. https://doi.org/10.1080/14756366.2023.2169282

  70. Jeong, H.J., Lee, H.L., Kim, S.J., Jeong, J.H., Ji, S.H., Kim, H.B., Kang, M., Lee, S.H., and Han, S.J., J. Enzym. Inhib. Med. Chem., 2022, vol. 37, no. 1, p. 2434. https://doi.org/10.1080/14756366.2022.2119566

    Article  CAS  Google Scholar 

  71. Xie, W., Yang, S., Liang, L., Wang, M., Zuo, W., Lei, Y., Zhang, Y., Chen, Y., and Jiang, Y., J. Med. Chem., 2022, vol. 65, p. 16570. https://doi.org/10.1016/j.ejmech.2019.03.055

    Article  CAS  PubMed  Google Scholar 

  72. Fleuti, M., Bártová, K., Slavětínská, L.P., Tloušt'Ová, E., Tichý, M., Gurská, S., Pavliš, P., Džubák, P., Hajdúch, M., and Hocek, M., J. Org. Chem., 2020, vol. 85, p. 10539. https://doi.org/10.1021/acs.joc.0c00928

    Article  CAS  PubMed  Google Scholar 

  73. Tokarenko, A., Lišková, B., Smoleń, S., Táborská, N., Tichý, M., Gurská, S., Perlíková, P., Hajdúch, M., and Hocek, M., J. Med. Chem., 2018, vol. 61, p. 9347. https://doi.org/10.1021/acs.jmedchem.8b01258

    Article  CAS  PubMed  Google Scholar 

  74. Ding, J., Liu, T., Zeng, C., Li, B., Ai, Y., Zhang, X., and Zhong, H., Chem. Heterocyclic Compd., 2022, vol. 58, p. 438. https://doi.org/10.1007/s10593-022-03110-w

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-Y. Tan.

Ethics declarations

The authors declared no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, ZY., Deng, J., Ye, QX. et al. Current Developments of Pyrrolo[2,3-d]pyrimidines with Anticancer Potential (A Review). Russ J Gen Chem 93, 2645–2662 (2023). https://doi.org/10.1134/S1070363223100195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223100195

Keywords:

Navigation