Skip to main content
Log in

Carbon Quantum Dot (CQD) Nanoparticles Synthesized by Sucrose and Urea: Application as Reinforcement Effect on Al–Mg–Cu–Zn Composite

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Water-soluble carbon quantum dot (CQD) nanoparticles were synthesized using a one-step hydrothermal method, with sucrose and urea selected as carbon precursors. The synthesized CQDs were characterized through SEM, TEM, X-ray diffraction, UV-Vis spectrum, FTIR, and fluorescence spectra analyses. HR-TEM results revealed the microstructure of CQDs as spherical-shaped particles, while XRD plots indicated their amorphous nature. XPS analysis confirmed the successful synthesis of N-doped CQDs. Moreover, this study introduced the reinforcing effect of CQD nanoparticles for the Al composites. The incorporation of CQD particles led to improved hardness properties of the Al–Zn–Mg–Cu composites by using Vickers tester. Additionally, SEM results suggested that CQD particles contributed to a grain fining effect, thereby reducing grain boundary separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Dinç, S., Kara, M., and Yavuz, E., Carbon Dots in Agricultural Systems, Elsevier, 2022, p. 69.

  2. Kaur, R., Singh, J., Kathuria, D., and Matharu, A.S., Sust. Chem. Pharm., 2022, vol. 29, p. 100813. https://doi.org/10.1016/j.scp.2022.100813

    Article  CAS  Google Scholar 

  3. Kir, Ş., Dehri, İ., Önal, Y., Esen, R., and Başar, C.A., Surf. Interfaces, 2022, vol. 29, p. 101679. https://doi.org/10.1016/j.surfin.2021.101679

    Article  CAS  Google Scholar 

  4. Rohde, L.E., Clausell, N, Pinto Ribeiro, J., Goldraich, L., Netto, R., Dec, G.W., DiSalvo, T.G., and Polanczyk, C.A., Int. J. Cardiol., 2005, vol. 102, p. 71. https://doi.org/10.1016/j.ijcard.2004.04.006

    Article  PubMed  Google Scholar 

  5. Şen, F.B., Beğiç, N., Bener, M., and Apak, R., Spectrochim. Acta (A), 2022, vol. 271, p. 120884. https://doi.org/10.1016/j.saa.2022.120884

    Article  CAS  Google Scholar 

  6. Radnia, F., Mohajeri, N., and Zarghami, N., Talanta, 2020, vol. 209, p. 120547. https://doi.org/10.1016/j.talanta.2019.120547

    Article  CAS  PubMed  Google Scholar 

  7. Polatoğlu, B. and Bozkurt, E., Res. Chem. Intermed., 2021, vol. 47, p. 1865. https://doi.org/10.1007/s11164-021-04404-y

    Article  CAS  Google Scholar 

  8. Eskalen, H., Uruş, S., Kavgacı, M., Kalmış, H.V., and Tahta, B., Biomass Conv. Bioref., 2023, p. 1. https://doi.org/10.1007/s13399-023-04048-5

  9. Başkaya, S.K., Tahta, B., Uruş, S., Eskalen, H., Çeşme, M., and Özğan, Ş., Biomass Conv. Bioref., 2022, p. 1. https://doi.org/10.1007/s13399-022-03017-8

  10. Dorbani, T., Bouleklab, M.C., Settar, A., Chetehouna, K., Naoui, Y., Revo, S., and Hamamda, S., J. Mater. Res. Technol., 2022, vol. 19, p. 1484. https://doi.org/10.1016/j.jmrt.2022.05.111

    Article  CAS  Google Scholar 

  11. Tiwari, J.K., Mandal, A., Sathish, N., Agrawal, A.K., and Srivastava, A.K., Addit. Manuf., 2020, vol. 33, p. 101095. https://doi.org/10.1016/j.addma.2020.101095

  12. Wang, F., Liu, H., Liu, Z., Guo, Z., and Sun, F., Sci. Rep., 2022, vol. 12, p. 9561. https://doi.org/10.1038/s41598-022-13793-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng, C., Ma, Y., Zhang, P., Zhang, X., and Wang, D., Mater. Lett., 2008, vol. 62, p. 2301. https://doi.org/10.1016/j.matlet.2007.11.086

    Article  CAS  Google Scholar 

  14. Abdullahi, U., Maleque, M.A., and Ali, M.Y., Mater. Today Proc., 2021, vol. 46, p. 6097. https://doi.org/10.1016/j.matpr.2020.03.333

    Article  CAS  Google Scholar 

  15. Palei, B.B., Dash, T., and Biswal, S.K., J. Mater. Sci., 2022, vol. 57, p. 8544. https://doi.org/10.1007/s10853-022-07043-9

    Article  CAS  Google Scholar 

  16. Zhao, W., Bao, R., Yi, J., Tao, J., Guo, S., and Tan, S., Mater. Sci. Eng. (A), 2021, vol. 805, p. 140573. https://doi.org/10.1016/j.msea.2022.143222

    Article  CAS  Google Scholar 

  17. Huang, X., Bao, R., and Yi, J.-h., J. Cent. South Univ., 2021, vol. 28, p. 1255. https://doi.org/10.1007/s11771-021-4693-y

    Article  CAS  Google Scholar 

  18. Zhao, W.-m., Bao, R., and Yi, J.-h., J. Mater. Sci., 2021, vol. 56, p. 12753. https://doi.org/10.1007/s10853-021-06116-5

    Article  CAS  Google Scholar 

  19. Eskalen, H., Çeşme, M., Kerli, S., and Özğan, Ş., J. Chem. Res., 2021, vol 45, p. 428. https://doi.org/10.1177/1747519820953823

  20. Aslan, M. and Eskalen, H., Fuller. Nanotub. Carbon Nanostructures, 2021, vol. 29, p. 1026. https://doi.org/10.1080/1536383X.2021.1926452

    Article  CAS  Google Scholar 

  21. Lin, H., Ding, L., Zhang, B., and Huang, J., R. Soc. Open Sci., 2018, vol. 5, p. 172149. https://doi.org/10.1098/rsos.172149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eskalen, H., Appl. Phys. (A), 2020, vol. 126, p. 708. https://doi.org/10.1007/s00339-020-03906-7

    Article  CAS  Google Scholar 

  23. Pandiyan, S., Arumugam, L., Srirengan, S.P., Pitchan, P., Sevugan, S., Kannan, K., Pitchan, G., Hegde, T.A., and Gandhirajan, V., ACS Omega, 2020, vol. 5, p. 30363. https://doi.org/10.1021/acsomega.0c03290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Swapna, M. and Sankararaman, S., Int. J. Mater. Sci., 2017, vol. 12, p. 541. https://doi.org/10.1088/2053-1591/aaa656

    Article  CAS  Google Scholar 

  25. Xu, X., Chen, Z., Li, Q., Meng, D., Jiang, H., Zhou, Y., Feng, S., and Yang, Y., Microchem. J., 2021, vol. 160, p. 105708. https://doi.org/10.1016/j.microc.2020.105708

    Article  CAS  Google Scholar 

  26. Azizi, Z., Alamdari, A., and Doroodmand, M.M., J. Therm. Anal. Calorim., 2018, vol. 133, p. 951. https://doi.org/10.1007/s10973-018-7293-9

    Article  CAS  Google Scholar 

  27. Gedda, G., Lee, C.-Y., Lin, Y.-C., and Wu, H.-f., Sens. Actuators (B), 2016, vol. 224, p. 396. https://doi.org/10.1016/j.snb.2015.09.065

    Article  CAS  Google Scholar 

  28. Ma, X., Li, S., Hessel, V., Lin, L., Meskers, S., and Gallucci, F., Chem. Eng. Sci., 2020, vol. 220, p. 115648. https://doi.org/10.1016/j.ces.2020.115648

    Article  CAS  Google Scholar 

  29. Asgari, M., Khanahmad, H., Motaghi, H., Farzadniya, A., Mehrgardi, M.A., and Shokrani, P., Appl. Phys. (A), 2021, vol. 127, p. 1. https://doi.org/10.1007/s00339-020-04171-4

    Article  CAS  Google Scholar 

  30. Garg, P., Gupta, P., Kumar, D., and Parkash, O., J. Mater. Environ. Sci., 2016, vol. 7, p. 1461. https://doi.org/10.1016/j.jmrt.2019.06.028

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Scientific Research Projects Coordination Unit of Kahramanmaraş Sütçü İmam University and Gaziantep University (project no. 2023/2-22 A and MF. DT.20.06, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aslan.

Ethics declarations

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, M., Eskalen, H. & Kavgaci, M. Carbon Quantum Dot (CQD) Nanoparticles Synthesized by Sucrose and Urea: Application as Reinforcement Effect on Al–Mg–Cu–Zn Composite. Russ J Gen Chem 93, 2152–2160 (2023). https://doi.org/10.1134/S1070363223080236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223080236

Keywords:

Navigation