Skip to main content
Log in

Mannich Reaction Involving 6-Amino-4-methyl-2-(thio)oxo-1,2-dihydropyridine-3,5-dicarbonitriles

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The reaction of (1-ethoxyethylidene)malononitrile with cyanoacetamide or cyanothioacetamide has yielded 6-amino-4-methyl-2-(thio)oxo-1,2-dihydropyridine-3,5-dicarbonitriles. The resulting pyridine derivatives enter into the aminomethylation reaction with an excess of formaldehyde and primary amines with the formation of previously unknown 8-methyl-6-oxo-3-R-1,3,4,6-tetrahydro-2H-pyrido[1,2-a][1,3,5]triazine-7,9-dicarbonitriles. Further treatment of 6-amino-4-methyl-2-thioxo-1,2-dihydropyridine-3,5-dicarbonitrile and its oxygen analog with excess of formaldehyde has led to the formation of 3,10-dimethyl-1,8-dithioxo-5,6,12,13-tetrahydro-1H,8H-dipyrido[1,2-a:1′,2′-e][1,3,5,7]tetrazocin-2,4,9,11-tetracarbonitrile and 6,6′-[methylenedi(imino)]bis(4-methyl-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile), respectively. These compounds have shown a pronounced antidote effect against the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid) in laboratory and field experiments on sunflower seedlings. Furthermore, 6-amino-4-methyl-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile has exhibited pronounced anticorrosion properties, acting as an adsorption-type corrosion inhibitor. The mechanism of the anticorrosion action has been investigated in detail using X-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Litvinov, V.P., Russ. Chem. Bull., 1998, vol. 47, no. 11, p. 2053. https://doi.org/10.1007/BF02494257

    Article  Google Scholar 

  2. Litvinov, V.P., Krivokolysko, S.G., and Dyachenko, V.D., Chem. Heterocycl. Compd., 1999, vol. 35, no. 5, p. 509. https://doi.org/10.1007/BF02324634

    Article  CAS  Google Scholar 

  3. Litvinov, V.P., Russ. Chem. Rev., 2006, vol. 75, no. 7, p. 577. https://doi.org/10.1070/RC2006v075n07ABEH003619

    Article  CAS  Google Scholar 

  4. Gouda, M.A., Berghot, M.A., Abd El Ghani, G.E., and Khalil, A.E.G.M., Synth. Commun., 2014, vol. 44, no. 3, p. 297. https://doi.org/10.1080/00397911.2013.823549

    Article  CAS  Google Scholar 

  5. Salem, M.A., Helel, M.H., Gouda, M.A., Ammar, Y.A., and El-Gaby, M.S.A., Synth. Commun., 2018, vol. 48, no. 4, p. 345. https://doi.org/10.1080/00397911.2017.1394468

    Article  CAS  Google Scholar 

  6. Gouda, M.A., Hussein, B.H., Helal, M.H., and Salem, M.A., J. Heterocycl. Chem., 2018, vol. 55, no. 7, p. 1524. https://doi.org/10.1002/jhet.3188

    Article  CAS  Google Scholar 

  7. Gouda, M.A., Attia, E., Helal, M.H., and Salem, M.A., J. Heterocycl. Chem., 2018, vol. 55, no. 10, p. 2224. https://doi.org/10.1002/jhet.3298

    Article  CAS  Google Scholar 

  8. Shamroukh, A.H., Kotb, E.R., and Anwar, M.M., Sharaf, M., Egypt. J. Chem., 2021, vol. 64, no. 8, p. 4509. https://doi.org/10.21608/EJCHEM.2021.64971.3392

    Article  Google Scholar 

  9. Hassan, H., Hisham, M., Osman, M., and Hayallah, A., J. Adv. Biomed. Pharm. Sci., 2023, vol. 6, no. 1, p. 1. https://doi.org/10.21608/jabps.2022.162396.1166

    Article  Google Scholar 

  10. Dovlatyan, V.V., Chem. Heterocycl. Compds., 1998, vol. 34, no. 1, p. 13. https://doi.org/10.1007/BF02290608

    Article  CAS  Google Scholar 

  11. Blotny, G., Tetrahedron, 2006, vol. 62, no. 41, p. 9507. https://doi.org/10.1016/j.tet.2006.07.039

    Article  CAS  Google Scholar 

  12. Gamez, P. and Reedijk, J., Eur. J. Inorg. Chem., 2006, vol. 2006, no. 1, p. 29. https://doi.org/10.1002/ejic.200500672

    Article  CAS  Google Scholar 

  13. Therrien, B., J. Organomet. Chem., 2011, vol. 696, no. 3, p. 637. https://doi.org/10.1016/j.jorganchem.2010.09.037

    Article  CAS  Google Scholar 

  14. Singla, P., Luxami, V., and Paul, K., Eur. J. Med. Chem., 2015, vol. 102, p. 39. https://doi.org/10.1016/j.ejmech.2015.07.037

    Article  CAS  PubMed  Google Scholar 

  15. Jain, S., Dwivedi, J., Jain, P., and Kishore, D., Synth. Commun., 2016, vol. 46, no. 14, p. 1155. https://doi.org/10.1080/00397911.2016.1192651

    Article  CAS  Google Scholar 

  16. Cascioferro, S., Parrino, B., Spanò, V., Carbone, A., Montalbano, A., Barraja, P., Diana, P., and Cirrincione, G., Eur. J. Med. Chem., 2017, vol. 142, p. 523. https://doi.org/10.1016/j.ejmech.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  17. Devadiga, D. and Ahipa, T.N., Liquid Crystals Rev., 2019, vol. 7, no. 2, p. 107. https://doi.org/10.1080/21680396.2019.1666753

    Article  CAS  Google Scholar 

  18. Bhagavath, P., Shetty, R., and unil, D., Crit. Rev. Solid State Mater. Sci., 2020, vol. 45, no. 5, p. 378. https://doi.org/10.1080/10408436.2019.1632794

    Article  CAS  Google Scholar 

  19. Prasher, P., Sharma, M., Aljabali, A.A.A., Gupta, G., Negi, P., Kapoor, D.N., Singh, I., Zacconi, F.C., de Jesus Andreoli Pinto, T., da Silva, M.W., Bakshi, H.A., Chellappan, D.K., Tambuwala, M.M., and Dua, K., Drug Dev. Res., 2020, vol. 81, no. 7, p. 837. https://doi.org/10.1002/ddr.21704

    Article  CAS  PubMed  Google Scholar 

  20. Liang, D., Xiao, W.J., and Chen, J.R., Synthesis, 2020, vol. 52, no. 17, p. 2469. https://doi.org/10.1055/s-0040-1707160

    Article  CAS  Google Scholar 

  21. Guo, H. and Diao, Q.P., Curr. Top. Med. Chem., 2020, vol. 20, no. 16, p. 1481. https://doi.org/10.2174/1568026620666200310122741

    Article  CAS  PubMed  Google Scholar 

  22. Utreja, D., Kaur, J., Kaur, K., and Jain, P., Mini-Rev. Org. Chem., 2020, vol. 17, no. 8, p. 991. https://doi.org/10.2174/1570193X17666200129094032

    Article  CAS  Google Scholar 

  23. Zhang, F.G., Chen, Z., Tang, X., and Ma, J.A., Chem. Rev., 2021, vol. 121, no. 23, p. 14555. https://doi.org/10.1021/acs.chemrev.1c00611

    Article  CAS  PubMed  Google Scholar 

  24. Singh, S., Mandal, M.K., Masih, A., Saha, A., Ghosh, S.K., Bhat, H.R., and Singh, U.P., Arch. Pharm., 2021, vol. 354, no. 6. Paper e2000363. https://doi.org/10.1002/ardp.202000363

  25. Sharma, A., Sheyi, R., de la Torre, B.G., El-Faham, A., and Albericio, F., Molecules, 2021, vol. 26, no. 4. Paper 864. https://doi.org/10.3390/molecules26040864

  26. Maliszewski, D. and Drozdowska, D., Pharmaceuticals, 2022, vol. 15, no. 2. Paper 221. https://doi.org/10.3390/ph15020221

  27. Kumari, S. and Singh, A., Mini-Rev. Org. Chem., 2022, vol. 19, no. 1, p. 52. https://doi.org/10.2174/1570193X18666210225115511

    Article  CAS  Google Scholar 

  28. Shahari, M.S.B. and Dolzhenko, A.V., Eur. J. Med. Chem., 2022, vol. 241. Article 114645. https://doi.org/10.1016/j.ejmech.2022.114645

  29. Sun, D., Si, C., Wang, T., and Zysman-Colman, E., Adv. Photonics Res., 2022, vol. 3, no. 11. Paper 2200203. https://doi.org/10.1002/adpr.202200203

  30. Dong, G., Jiang, Y., Zhang, F., Zhu, F., Liu, J., and Xu, Z., Arch. Pharm., 2023, vol. 356, no. 3. Paper e2200479. https://doi.org/10.1002/ardp.202200479

  31. Nosova, E.V., Lipunova, G.N., Zyryanov, G.V., Charushin, V.N., and Chupakhin, O.N., Org. Chem. Front., 2022, vol. 9, p. 6646. https://doi.org/10.1039/D2QO00961G

    Article  CAS  Google Scholar 

  32. Dolzhenko, A.V., Dolzhenko, A.V., and Chui, W.K., Heterocycles, 2006, vol. 68, no. 8, p. 1723. https://doi.org/10.3987/REV-06-607

    Article  CAS  Google Scholar 

  33. Dolzhenko, A., Dolzhenko, A., and Chui, W.-K., Heterocycles, 2008, vol. 75, no. 7, p. 1575. https://doi.org/10.3987/REV-08-629

    Article  CAS  Google Scholar 

  34. Dolzhenko, A., Heterocycles, 2011, vol. 83, no. 4, p. 695. https://doi.org/10.3987/REV-10-687

    Article  CAS  Google Scholar 

  35. Alizadeh, S.R. and Ebrahimzadeh, M.A., Eur. J. Med. Chem., 2021, vol. 223. Paper N 113537. https://doi.org/10.1016/j.ejmech.2021.113537

  36. Dotsenko, V.V., Frolov, K.A., Chigorina, E.A., Khrustaleva, A.N., Bibik, E.Yu., and Krivokolysko, S.G., Russ. Chem. Bull., 2019, vol. 68, no. 4, p. 691. https://doi.org/10.1007/s11172-019-2476-5

    Article  CAS  Google Scholar 

  37. Dotsenko, V.V., Krivokolysko, S.G., and Litvinov, V.P., Chem. Heterocycl. Compd., 2007, vol. 43, no. 4, p. 517. https://doi.org/10.1007/s10593-007-0080-3

    Article  CAS  Google Scholar 

  38. Dotsenko, V.V., Suikov, S.Yu., Pekhtereva, T.M., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2013, vol. 49, no. 7, p. 1009. https://doi.org/10.1007/s10593-013-1339-5

    Article  CAS  Google Scholar 

  39. Khrustaleva, A.N., Frolov, K.A., Dotsenkо, V.V., Dmitrienko, A.O., Bushmarinov, I.S., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2014, vol. 50, no. 1, p. 46. https://doi.org/10.1007/s10593-014-1447-x

    Article  CAS  Google Scholar 

  40. Khrustaleva, A.N., Frolov, K.A., Dotsenkо, V.V., and Krivokolysko, S.G., Russ. J. Org. Chem., 2014, vol. 50, no. 12, p. 1804. https://doi.org/10.1134/S107042801412015X

    Article  CAS  Google Scholar 

  41. Dotsenko, V.V., Krivokolysko, S.G., and Litvinov, V.P., Chem. Heterocycl. Compd., 2007, vol. 43, no. 11, p. 1455. https://doi.org/10.1007/s10593-007-0224-5

    Article  CAS  Google Scholar 

  42. Dotsenko, V.V., Krivokolysko, S.G., and Litvinov, V.P., Russ. Chem. Bull., 2005, vol. 54, no. 11, p. 2692. https://doi.org/10.1007/s11172-006-0177-3

    Article  CAS  Google Scholar 

  43. Dotsenko, V.V., Krivokolysko, S.G., and Litvinov, V.P., Chem. Heterocycl. Compds., 2007, vol. 43, no. 11, p. 1455. https://doi.org/10.1007/s10593-007-0224-5

    Article  CAS  Google Scholar 

  44. Dotsenko, V.V., Krivokolysko, S.G., Chernega, A.N., and Litvinov, V.P., Monatsh. Chem., 2007, vol. 138, no. 1, p. 35. https://doi.org/10.1007/s00706-006-0569-y

    Article  CAS  Google Scholar 

  45. Dotsenko, V.V., Krivokolysko, S.G., Litvinov, V.P., and Rusanov, E.B., Doklady Chem., 2007, vol. 413, no. 1, p. 68. https://doi.org/10.1134/S0012500807030032

    Article  CAS  Google Scholar 

  46. Dotsenko, V.V., Krivokolysko, S.G., Chernega, A.N., and Litvinov, V.P., Russ. Chem. Bull., 2007, vol. 56, no. 5, p. 1053. https://doi.org/10.1007/s11172-007-0158-1

    Article  CAS  Google Scholar 

  47. Frolov, K.A., Dotsenko, V.V., Krivokolysko, S.G., Litvinov, V.P., Chem. Heterocycl. Compds., 2010, vol. 46, no. 9, p. 1142. https://doi.org/10.1007/s10593-010-0641-8

    Article  CAS  Google Scholar 

  48. Dotsenko, V.V., Krivokolysko, S.G., and Litvinov, V.P., Russ. Chem. Bull., 2012, vol. 61, no. 1, p. 136. https://doi.org/10.1007/s11172-012-0019-4

    Article  CAS  Google Scholar 

  49. Frolov, K.A., Dotsenko, V.V., Krivokolysko, S.G., Zubatyuk, R.I., and Shishkin, O.V., Chem. Heterocycl. Compd., 2013, vol. 49, no. 3, p. 472. https://doi.org/10.1007/s10593-013-1270-9

    Article  CAS  Google Scholar 

  50. Frolov, K.A., Dotsenko, V.V., and Krivokolysko, S.G., Russ. Chem. Bull., 2013, vol. 62, no. 6, p. 1401. https://doi.org/10.1007/s11172-013-0201-3

    Article  CAS  Google Scholar 

  51. Khrustaleva, A.N., Dotsenkо, V.V., and Krivokolysko, S.G., Russ. J. Org. Chem., 2016, vol. 52, no. 9, p. 1368. https://doi.org/10.1134/S1070428016090232

    Article  CAS  Google Scholar 

  52. Orlov, A.A., Eletskaya, A.A., Frolov, K.A., Golinets, A.D., Palyulin, V.A., Krivokolysko, S.G., Kozlovskaya, L.I., Dotsenko, V.V., and Osolodkin, D.I., Arch. Pharm., 2018, vol. 351, no. 6. Paper 1700353. https://doi.org/10.1002/ardp.201700353

  53. Dotsenko, V.V., Krivokolysko, S.G., Rusanov, E.B., Gutov, A.V., and Litvinov, V.P., Chem. Heterocycl. Compds., 2007, vol. 43, no. 7, p. 906. https://doi.org/10.1007/s10593-007-0143-5

    Article  CAS  Google Scholar 

  54. Strelkov, V.D., Dotsenko, V.V., Ryzhkova, N.A., Lukina, D.Yu., Levashov, A.S., Bespalov, A.V., Buryi, D.S., and Kindop, V.K., Patent RU 2783114, 2022; Byul. Izobret., 2022, no. 31.

  55. Li, L., Feng, J., Long, Y.O., Liu, Y., and Ren, P., Liu, Y., Patent WO 2018064510, 2018.

  56. Li, L., Feng, J., Long, Y.O., Liu, Y., and Ren, P., Patent US 10723738, 2020.

  57. Wardakhan, W.W. and Ouf, S.A., Egypt. J. Chem., 2005, vol. 48, no. 4, p. 393.

    CAS  Google Scholar 

  58. Watanabe, Y., Usui, H., Kobayashi, S., Yoshiwara, H., Shibano, T., Tanaka, T., Morishima, Y., Yasuoka, M., and Kanao, M., J. Med. Chem., 1992, vol. 35, no. 1, p. 189. https://doi.org/10.1021/jm00079a026

    Article  CAS  PubMed  Google Scholar 

  59. Shibano, T., Tanaka, T., Morishima, Y., Yasuoka, M., Watanabe, K., and Fujii, F., Arch. Int. Pharmacodyn. Ther., 1992, vol. 319, p. 114.

    CAS  PubMed  Google Scholar 

  60. Tanaka, T., Morishima, Y., Watanabe, K., Shibutani, T., Yasuoka, M., and Shibano, T., Cardiovasc. Res., 1993, vol. 27, no. 7, p. 1374. https://doi.org/10.1093/cvr/27.7.1374

    Article  CAS  PubMed  Google Scholar 

  61. Pawlak, D., Małyszko, J., Myśliwiec, M., Takada, A., and Buczko, W., Acta Physiol. Hung., 1996, vol. 84, no. 3, p. 325.

    CAS  PubMed  Google Scholar 

  62. Pawlak, D., Adamkiewicz, M., Małyszko, J., Takada, A., Myśliwiec, M., and Buczko, W., J. Cardiovasc. Pharmacol., 1998, vol. 32, no. 3, p. 266. https://doi.org/10.1097/00005344-199808000-00014

    Article  CAS  PubMed  Google Scholar 

  63. Hosoda, Y., Hori, S., Kanai, M., and Tanaka, T., Patent JPH04261121, 1992.

  64. Pawlak, D., Pawlak, K., Chabielska, E., Małyszko, J., Takada, A., Myśliwiec, M., and Buczko, W., Thromb. Res., 1998, vol. 90, no. 6, p. 25. https://doi.org/10.1016/s0049-3848(98)00037-1

    Article  Google Scholar 

  65. Singh, A.K., Mehtab, S., and Jain, A.K., Anal. Chim. Acta, 2006, vol. 575, no. 1, p. 25. https://doi.org/10.1016/j.aca.2006.05.076

    Article  CAS  PubMed  Google Scholar 

  66. Bochis, R.J.,Patent US 3984549, 1976.

  67. Bochis, R.J., Patent GB 1503046, 1978.

  68. Patent FR 2364032, 1978.

  69. Le Diguarher, T., Chollet, A.-M., Bertrand, M., Hennig, P., Raimbaud, E., Sabatini, M., Guilbaud, N., Pierré, A., Tucker, G.C., and Casara, P., J. Med. Chem., 2003, vol. 46, no. 18, p. 3840. https://doi.org/10.1021/jm0307638

    Article  CAS  PubMed  Google Scholar 

  70. Theoclitou, M.-E., Aquila, B., Block, M.H., Brassil, P.J., Castriotta, L., Code, E., Collins, M.P., Davies, A.M., Deegan, T., Ezhuthachan, J., Filla, S., Freed, E., Hu, H., Huszar, D., Jayaraman, M., Lawson, D., Lewis, P.M., Nadella, M.V., Oza, V., Padmanilayam, M., Pontz, T., Ronco, L., Russell, D., Whitston, D., and Zheng, X., J. Med. Chem., 2011, vol. 54, no. 19, p. 6734. https://doi.org/10.1021/jm200629m

    Article  CAS  PubMed  Google Scholar 

  71. Catarzi, D., Varano, F., Varani, K., Vincenzi, F., Pasquini, S., Dal Ben, D., Volpini, R., and Colotta, V., Pharmaceuticals, 2019, vol. 12, no. 4. Paper 159. https://doi.org/10.3390/ph12040159

  72. Davies, J. and Caseley, J.C., Pesticide Sci., 1999, vol. 55, no. 11, p. 1043. https://doi.org/10.1002/(SICI)1096-9063(199911)55:11<1043::AID-PS60>3.0.CO;2-L

    Article  CAS  Google Scholar 

  73. Abu-Qare, A.W. and Duncan, H.J., Chemosphere, 2002, vol. 48, no. 9, p. 965. https://doi.org/10.1016/S0045-6535(02)00185-6

    Article  CAS  PubMed  Google Scholar 

  74. Jia, L., Jin, X.Y., Zhao, L.X., Fu, Y., and Ye, F., J. Agric. Food Chem., 2022, vol. 70, no. 18, p. 5499. https://doi.org/10.1021/acs.jafc.2c01565

    Article  CAS  PubMed  Google Scholar 

  75. Dotsenko, V.V., Buryi, D.S., Lukina, D.Y., Stolyarova, A.N., Aksenov, N.A., Aksenova, I.V., Strelkov, V.D., and Dyadyuchenko, L.V., Monatsh. Chem., 2019, vol. 150, no. 11, p. 1973. https://doi.org/10.1007/s00706-019-02505-4

    Article  CAS  Google Scholar 

  76. Kishi, K., Okino, Y., and Fujimoto, Y., Surface Sci., 1986, vol. 176, nos. 1‒2, p. 23. https://doi.org/10.1016/0039-6028(86)90162-7

    Article  CAS  Google Scholar 

  77. Nakagaki, R., Frost, D.C., and McDowell, C.A., J. Electron. Spectros. Relat. Phenomena, 1981, vol. 22, no. 3, p. 289. https://doi.org/10.1016/0368-2048(81)85019-0

    Article  CAS  Google Scholar 

  78. Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., and McIntyre, N.S., Surf. Interface Anal., 2004, vol. 36, no. 12, p. 1564. https://doi.org/10.1002/sia.1984

    Article  CAS  Google Scholar 

  79. Schmidt, H.W. and Junek, H., Monatsh. Chem., 1977, vol. 108, no. 4, p. 895. https://doi.org/10.1007/BF00898055

    Article  CAS  Google Scholar 

  80. Holmes, W., Anat. Rec., 1943, vol. 86, p. 157. https://doi.org/10.1002/ar.1090860205

    Article  Google Scholar 

  81. Trapeznikov, V.A., Shabanova, I.N., Kholzakov, A.V., and Ponomaryov, A.G., J. Electron. Spectros. Relat. Phenomena, 2004, vols. 137–140, p. 383. https://doi.org/10.1016/j.elspec.2004.02.115

    Article  CAS  Google Scholar 

  82. Shirley, D.A., Phys. Rev. B, 1972, vol. 5, no. 12, p. 4709. https://doi.org/10.1103/PhysRevB.5.4709

    Article  Google Scholar 

  83. Wojdyr, M., J. Appl. Cryst., 2010, vol. 43, p. 1126. https://doi.org/10.1107/S0021889810030499

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experiments were performed using the equipment of Scientific-Education Center “Diagnostics of Structure and Properties of Nanomaterials” of Kuban State University and Center for Collective Usage “Surface and Novel Materials” of Udmurt Federal Research Center, Ural Branch of RAS.

Funding

This study was financially supported by Kuban Science Foundation in the scope of the science project no. MFI-20.1-26/20 (application no. MFI-20.1/45) as well as by North Caucasus Federal University (interdisciplinary project “Synthesis and Antidote Activity with Respect to Herbicide 2,4-D of Heterocyclic Derivatives of Methylene-Active Nitriles,” V.D. Strelkov and I.V. Aksenova) in the framework of the program for strategic academic leadership “PRIORITET-2030.” Investigation of the anticorrosion activity was performed according to the research plan no. 121030100002-0 (Ministry of Science and Higher Education of Russia). The experiments using X-ray photoelectron spectroscopy were supported by Ministry of Science and Higher Education of Russia (agreement no. 075-15-2021-1351; F.F. Chausov, N.V. Lomova, I.S. Kazantseva, and N.Yu. Isupov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dotsenko.

Ethics declarations

Authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panaetov, A.O., Strelkov, V.D., Dotsenko, V.V. et al. Mannich Reaction Involving 6-Amino-4-methyl-2-(thio)oxo-1,2-dihydropyridine-3,5-dicarbonitriles. Russ J Gen Chem 93, 1655–1668 (2023). https://doi.org/10.1134/S1070363223070046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223070046

Keywords:

Navigation