Skip to main content
Log in

Synthesis and Biological Activity of Triacetonamine

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2020

This article has been updated

Abstract

Sterically hindered amines such as triacetonamine and certain closely related analogs have been applied in medicine, pharmacology and industry. Various methods of synthesis of 2,2,6,6-tetramethylpiperidin-4-one (triacetonamine) derivatives start generally with acetone, phorone, piperidine N-oxides, piperidine alcohols, and 4-dimethylamine piperidine derivatives. Physical properties of triacetonamine including density, boiling point, flash point, and melting point have been determined. Reactions of triacetonamine derivatives with various organic reagents are also summarized. Triacetonamine derivatives react via three functional groups including carbonyl, methylenes adjacent to the carbonyl group, and NH. Some other miscellaneous reactions are presented. Conformation of triacetonamine is described. Theoretical models for the conformations of triacetonamine have been developed by quantum and molecular mechanics methods. Triacetonamine demonstrates different types of biological activities, such as antialzheimer, antifungal, antimicrobial, anti-HIV, anticancer, antioxidant, P38 kinase inhibitor, DNA labelling, antispasmodic, and psychotropic, and high ganglionic blocking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Fig. 1.
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

Change history

  • 20 June 2020

    Erratum

REFERENCES

  1. Smirk, F.H., and Hodge, J.V.J., Chin. Pharm. Therap., 1960, vol. 1, p. 610.

    CAS  Google Scholar 

  2. Keana, T.F.W., Chem. Rev., 1978, vol. 78, p. 37. https://doi.org/10.1021/cr60311a004

    Article  CAS  Google Scholar 

  3. Guziec, Jr.F.S. and Torres, F.F., J. Org. Chem., 1993, vol. 58, p. 1604. https://doi.org/10.1021/jo00058a055

    Article  CAS  Google Scholar 

  4. Hook, R., Ind. Eng. Chem. Res., 1997, vol. 36, p. 1779. https://doi.org/10.1021/ie9605589

    Article  CAS  Google Scholar 

  5. Francis, F., J. Chem. Soc., 1927, p. 2897. https://doi.org/10.1039/JR9270002896

  6. Haruna, T., Nishimura, A., and Sugibuchi K., Eur. Patent 0152935, 1985; Chem. Abstr., 1986, vol. 104, no. 88440.

  7. Sosnovsky, G., Lukszo, J., Brasch, R.C., Eriksson, U.G., and Tozer, T.N., J. Med. Chem., 1989, vol. 24, p. 241. https://doi.org/10.1016/0223-5234(89)90005-6

    Article  CAS  Google Scholar 

  8. Frolow, O.B., Bode, E., and Engels, J.W., Nucleosides, Nucleotides and Nucleic Acids, 2007, vol. 26, p. 655. https://doi.org/10.1080/15257770701490522

    Article  PubMed  CAS  Google Scholar 

  9. Nakamura, K., Ishiyama, K., Ikai, H., Kanno, T., Sasaki, K., Niwano, Y., and Kohno, M., J. Clin. Biochem. Natur., 2011, vol. 49, no. 2, p. 87. https://doi.org/10.3164/jcbn.10-125

    Article  CAS  Google Scholar 

  10. Chengguo, S., Bingcheng, H., and Zuliang, L., Heterocycl. Chem., 2012, vol. 23, no. 3, p. 295. https://doi.org/10.1002/hc.21017

    Article  CAS  Google Scholar 

  11. Francavilla, C., Turtle, E.D., Kim, B., O’Mahony, D.J.R., Shiau, T.P., Low, E., Alvarez, N.J., Celeri, C.E., D’Lima, L., Friedman, L.C., Ruado, F.S., Xu, P., Zuck, M.E., Anderson, M.B., Najafi, R., and Jain, R.K., Bioorg. Med. Chem. Let., 2011, vol. 21, p. 3029. https://doi.org/10.1016/j.bmcl.2011.03.035

    Article  CAS  Google Scholar 

  12. Dickerman, S.C. and Lindwall, H G., J. Org. Chem., 1949, vol. 14, no. 4, p. 530. https://doi.org/10.1021/jo01156a005

    Article  CAS  Google Scholar 

  13. Robertson, J.E., Biel, J.H., and Dierro, F., J. Chem. Soc., 1963, vol. 6, p. 381.

    CAS  Google Scholar 

  14. Freter, K., J. Org. Chem., 1975, vol. 40, p. 2525. https://doi.org/10.1021/jo00905a023

    Article  CAS  Google Scholar 

  15. Galera, E., szykula, J., and Zabza, A., Liebigs Annalen der Chemie, 1987, vol. 9, p. 777. https://doi.org/10.1002/jlac.198719870827

    Article  Google Scholar 

  16. Xiaopeng, F., Shuai, L., Xilong, Y., Xiaobao, D., and Ligong, C., Catal. Comm., 2010, vol. 11, p. 960. https://doi.org/10.1016/j.catcom.2010.04.012

    Article  CAS  Google Scholar 

  17. Frantisek, V., Papalova, A., Manasek, Z., Luston, J., and Hercegova, G., Chem. Abstr., 1988, vol. 109, no. 170231t.

  18. Frantisek, V., Bielikova, A., Vassova, G., Luston, J., Romanov, A., Manasek, Z., and Borsig, E.J., Chem. Abstr., 1988, vol. 109, no. 232108p.

  19. Frantisek, V., Manasek, Z., Papalova, A., and Hercegova, G., Chem. Abstr., 1988, vol. 109, no. 190228v.

  20. Vignali, G., Scrima, R., and Borzatta, V., Eur. Patent 508940; Chem. Abstr., 1992, vol. 117, nos. 49972s, 27964p.

  21. Wanicek, H., Gruber, H., and Greber, G., Die Angew. Makromol. Chem., 1993, vol. 213, p. 207. https://doi.org/10.1002/apmc.1993.052130118

    Article  CAS  Google Scholar 

  22. Kagan, E.Sh. and Zhukova, I.Yu., Russ. J. Electrochem., 2000, vol. 36, no. 2, p. 203.

    Article  CAS  Google Scholar 

  23. Rohbogner, C J., Wunderlich, S.H., Clososki, G C., and Knochel, P., Eur. J. Org. Chem., 2009, vol. 11, p. 1781. https://doi.org/10.1002/ejoc.200801277

    Article  CAS  Google Scholar 

  24. Matsuki, Y., Maly, T., Quari, O., Karoui, H., Moigne, F., Rizzato, E., Lyubenova, S., Herzfeld, J., Prisner, J., Tordo, P., and Griffin, G.R., Angew. Chem., Inter. Ed., 2009, vol. 48, p. 4996. https://doi.org/10.1002/anie.200805940

    Article  CAS  Google Scholar 

  25. Dobbs, A.P., Jones, P., Penny, M.J., and Rigby, S.E., Tetrahedron, 2009, vol. 65, p. 5271. https://doi.org/10.1016/j.tet.2009.04.078

    Article  CAS  Google Scholar 

  26. Nesvadba, P., Bugnon, L., Marie, P., and Novak, P., Chem. Mater, 2010, vol. 22, p. 783. https://doi.org/10.1021/cm901374u

    Article  CAS  Google Scholar 

  27. Meng, S., Xi, Du., Huabang, W., Zhiwei, W., Yang, L., and Ligong, C., Catal. Lett., 2011, vol. 141, p. 1703.

    Article  CAS  Google Scholar 

  28. Narumi, T., Arai, H., Yoshimura, K., Harada, S., Nomura, W., Matsushita, S., and Tamamura, H., Bioorg. Med. Chem., 2011, vol. 19, p. 6735. https://doi.org/10.1016/j.bmc.2011.09.045

    Article  PubMed  CAS  Google Scholar 

  29. Wong, P.Y., Chow, W.K., Chung, K.H., Lau, C.P., and Kwong, F.Y., Chem. Commun., 2011, vol. 47, p. 8328. https://doi.org/10.1039/c1cc12240a

    Article  CAS  Google Scholar 

  30. Ricci, A., Marinello, J., Bortolus, M., Saanchez, A., Grandas, A., Pedroso, E., Pommier, Y., Capranico, G., Maniero, A.L., and Zagotto, G., J. Med. Chem., 2011, vol. 54, p. 1003. https://doi.org/10.1021/jm101232t

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Zakrzewski, J. and Krawczyk, M., Biorg. Med. Chem. Lett., 2011, vol. 21, p. 514. https://doi.org/10.1016/j.bmcl.2010.10.092

    Article  CAS  Google Scholar 

  32. Dane, E., Corzilius, B., Rizzato, E., stocker, P., Maly, T., Smith, A., Griffin, R., Quari, O., Tordo, P., and Swager, T., J. Org. Chem., 2012, vol. 77, p. 1789. https://doi.org/10.1021/jo202349j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ren, X., Kocer, H., Worley, S., Broughton, R., and Huang, T., J. App. Polym. Sci., 2013, p. 3192. https://doi.org/10.1002/app.37731

  34. Rozantser, E.G., Bakin, I.I., Kagan, E.Sh., Zhdanov, R.I., and Zhvlin, V.M., J. Chem. Res. Synopses, 1979, vol. 8, p. 260.

    Google Scholar 

  35. Mori, H., Ohara, M., and Kwan, T., Chem. Pharm. Bull., 1980, vol. 28, p. 3178. https://doi.org/10.1248/cpb.28.3178

    Article  CAS  Google Scholar 

  36. Myshikina, L.A., Stoyanovich, F.M., Gol’dfarb, Ya.L., and Kazarina, E.K., Izv. Akad. Nauk SSSR, Ser. Khim., 1986, vol. 35, no. 12, p. 2511.

    Google Scholar 

  37. Brik, M.E., Syn. Comm., 1990, vol. 20, p. 597. https://doi.org/10.1080/00397919008244909

    Article  CAS  Google Scholar 

  38. Zhukova, I.Yu., Kagan, E.Sh., and Smirnov, V.A., Zh. Org. Khim., 1993, vol. 29, p. 751.

    CAS  Google Scholar 

  39. Elinson, M.N., Dorofeev, A.S., Feducovich, S.K., Nasybullin, R.F., Litvin, E.F., Kopyshev, M.V., and Nikishin, G.I., Tetrahedron, 2006, vol. 62, p. 8021. https://doi.org/10.1016/j.tet.2006.06.031

    Article  CAS  Google Scholar 

  40. Sato, S., Tsunoda, M., Suzuki, M., Kutsuna, M., Takido, K., Shinda, M., Mizuguchi, H., Obara, H., and Ohya, H., Spectrochim. Acata A, 2009, vol. 71, p. 2030. https://doi.org/10.1016/j.saa.2008.07.045

    Article  CAS  Google Scholar 

  41. Lutz, W.B., Lazarus, S., and Meltzer, R.I., J. Org. Chem., 1962, p. 1695. https://doi.org/10.1021/jo01052a050

  42. Lind, H. and Winkler, T., Tetrahedron Lett., 1980, vol. 21, p. 119. https://doi.org/10.1016/S0040-4039(00)93639-6

    Article  CAS  Google Scholar 

  43. Kaliska, V., Toma, S., and Tkac, A., Chem. Papers, 1988, vol. 42, p. 243.

    CAS  Google Scholar 

  44. Murray, R.W. and Singh, M., Tetrahedron Lett., 1988, vol. 29, no. 37, p. 4677. https://doi.org/10.1016/S0040-4039(00)80578-X

    Article  CAS  Google Scholar 

  45. Brik, M.E., Tetrahedron Lett., 1995, vol. 36, no. 31, p. 5519. https://doi.org/10.1016/0040-4039(95)01053-K

    Article  CAS  Google Scholar 

  46. Zakrzewski, J., Syn. Comm., 1988, vol. 18, p. 2135. https://doi.org/10.1080/00397918808068284

    Article  CAS  Google Scholar 

  47. Smythe, M.L., Nakaie, C.R., and Marshall, G.R., J. Am. Chem. Soc., 1995, vol. 117, p. 10555. https://doi.org/10.1021/ja00147a018

    Article  CAS  Google Scholar 

  48. Kostyanovsky, R.G., Elnalanov, Y.I., Chervin, I.I., Kanovalikhin, S.V., Zolotoc, A.B., and Atovnyan, L.O., Mendeleev Comm., 1996, vol. 6, no. 4, p. 143. https://doi.org/10.1070/MC1996v006n04ABEH000619

    Article  Google Scholar 

  49. Sakai, K., Yamada, K.I., Yamasaki, T., Kinoshita, Y., Mito, F., and Utsumi, H., Tetrahedron, 2010, vol. 66, p. 2311. https://doi.org/10.1016/j.tet.2010.02.004

    Article  CAS  Google Scholar 

  50. Krinitskaya, L.A., Russ. Chem. Bull., 2007, vol. 56, no. 3, p. 527.

    Article  CAS  Google Scholar 

  51. Blizzard, T.A., Chen, H.Y., Wu, I.Y., Kim, S., Mortko, C. J., Variankava, N., and Chin, A., PCT Int. Appl. No.2008039420

  52. Sato, S., Tsunoda, M., Suzuki, M., Takidouchi, K., Mizuguchi, H., Obara, H., and Ohya, H., Spectrochimica Acta A, 2009, vol. 71, p. 2030. https://doi.org/10.1016/j.saa.2008.07.045

    Article  CAS  Google Scholar 

  53. Navajas, C.Ch., Montero, L.A., and Serna, B.La., J. Comp. Aided Mol. Des., 1990, vol. 4, p. 403.

    Article  CAS  Google Scholar 

  54. Klemchuk, P.P., ACS symposium Series, American Chemical Society, Washington, DC, June 14, 1985, vol. 280, p. 1. https://doi.org/10.1021/bk-1985-0280.ch001

  55. Wanicek, H., Gruber, H., and Greber, G., Die Angewandte Makromolekulare Chemie, 1993, vol. 213, no. 1, p. 207. https://doi.org/10.1002/apmc.1993.052130118

    Article  CAS  Google Scholar 

  56. Bretherick, L., Lee, G.E., Lunt, E., wragg, W.R., and Edge, N.D., Nature, 1959, vol. 184, p. 1707. https://doi.org/10.1038/1841707a0

    Article  PubMed  CAS  Google Scholar 

  57. Kats, M.M., Lavretskaya, E.F., Chervin, I.I., El’natashov, Yu.I., and Kostyanovskii, R.G., Pharm. Chem. J., 1987, vol. 21, no. 6, p. 411.

    Article  Google Scholar 

  58. Ricci, A., Marinello, J., Sanchez, A., Grandas, A., Pedroso, E., Pommier, Y., Gapranico, Maniero, A.L., and Zagotto, G., J. Med. Chem., 2011, vol. 54, no. 4, p. 1003. https://doi.org/10.1021/jm101232t

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Hunt, J.A., Kallashi, F., Ruzek, R.D., Sinclair, P.J., Ita, I., Mccormick, S.X., Pivnichny, J.V., Hop, C.E.C.A., Kumar, S., Wang, Z., O’Keefe, S.J., O’Neill, E.A., Porter, G., Thompson, J.E., Woods, A., Zallere, D.M., and Doherty, J.B., Bioorg. Med. Chem. Lett., 2003, vol. 13, p. 467. https://doi.org/10.1016/S0960-894X(02)00990-3

    Article  PubMed  CAS  Google Scholar 

  60. Weinberg, A., Nylander, K.D., Yan, C., Ma, L., Hsia, C.J.C., Tyarin, V.A., Kagan, V.E., and Schot, N.F., Brain Res., 2004, vol. 1012, p. 13. https://doi.org/10.1016/j.brainres.2004.03.048

    Article  PubMed  CAS  Google Scholar 

  61. Frolow, O., Bode, B.E., and Engels, J.W., Nucleosides, Nucleotides and Nucleic Acids, 2007, vol. 26, p. 655. https://doi.org/10.1080/15257770701490522

    Article  PubMed  CAS  Google Scholar 

  62. Kumamoto, T., Suzuki, K., Kim, S.K., Hoshino, K., Ueno, K., Fukuzumi, M., and Ishikawa, T., Helvetica Chemica Acta, 2010, vol. 93, p. 2109. https://doi.org/10.1002/hlca.201000076

    Article  CAS  Google Scholar 

  63. Soliman, H.A., Yousif, M.N.M., Said, M.M., Hassan, N.A., Ali, M.M., Awad, H.M., and Abdel-Megeid, F.M.E., Der Pharma Chemica, 2014, vol. 6, no. 3, p. 394.

    Google Scholar 

  64. Fayed, A.A., Bahashwan, S.A., Yousif, M.N.M., Yousif, N.M., and Gad, F.A., Russ. J. Gen. Chem., 2019, vol. 89, no. 9, p. 1887. https://doi.org/10.1134/S1070363219090251

    Article  CAS  Google Scholar 

  65. Yousif, M.N.M., Nassar, I.F., Yousif, N.M., Awad, H.M., and El-Sayed, W.A., Russ. J. Gen. Chem., 2019, vol. 89, no. 8, p. 1673. https://doi.org/10.1134/S1070363219080218

    Article  CAS  Google Scholar 

  66. Fayed, A.A., Yousif, M.N.M., Abdelgawad, T.T., Amr, A.E., Yousif, N.M., and Gad, F.A., Chem. Heterocycl. Compd., 2019, vol. 55, no. 8, p.773. https://doi.org/10.1007/s10593-019-02534-1

    Article  CAS  Google Scholar 

  67. Nemr, M.T.M., Yousif, M.N.M., and Barciszewski, J., Archiv Der Pharmazie, 2019, vol. 352, no. 80, p. 1. https://doi.org/10.1002/ardp.201900062

    Article  CAS  Google Scholar 

  68. Yousif, M.N.M., Fayed, A.A., and Yousif, N.M., Egypt. J. Chem., 2019, vol. 62, no. 8, p. 1759. https://doi.org/10.21608/ejchem.2019.7103.1586

    Article  Google Scholar 

  69. Fayed, A.A. and Yousif, M.N.M., Russ. J. Gen. Chem., 2019, vol. 89, no. 6, p. 1209. https://doi.org/10.1134/S1070363219060173

    Article  CAS  Google Scholar 

  70. Yousif, M.N.M., Hussein, H.A.R., Yousif, N.M., ElManawaty, M.A., and El-Sayed, W.A., J. Appl. Pharm. Sci., 2019, vol. 9, no. 1, p. 6. https://doi.org/10.7324/JAPS.2019.90102

    Article  CAS  Google Scholar 

  71. Yousif, M.N.M., Fayed, A.A., and Yousif, N.M., Der Pharma Chemica, 2018, vol. 10, no. 8, p. 105.

    CAS  Google Scholar 

  72. Yousif, M.N.M., El-Sayed, W.A., Abbas, H.S., Awad, H.M., Yousif, N.M., J. Appl. Pharm. Sci., 2017, vol. 7, no. 11, p. 21. https://doi.org/10.7324/JAPS.2017.71104

    Article  CAS  Google Scholar 

  73. El-Gazzar, A.B.A., El-Enany, M.M., and Mahmoud, M.N., Bioorg. Med. Chem., 2008, vol. 16, p. 3261. https://doi.org/10.1016/j.bmc.2007.12.012

    Article  PubMed  CAS  Google Scholar 

  74. Narumi, T., Arai, H., Yoshimura, K., Harada, S., Nomura, W., Matsushita, S., Tamamura, H., Bioorg. Med. Chem., 2011, vol. 19, p. 6735. https://doi.org/10.1016/j.bmc.2011.09.045

    Article  PubMed  CAS  Google Scholar 

  75. Francavilla, C., Turtle, E.D., Kim, B., O’Mahony, D.J.R., Shian, T.P., Low, E., Alvarez, N.J., Celeri, C.E., D’Lima, L., Friedman, L.C., Ruado, F.S., Xu, P., Zuck, M.E., Anderson, M.B., Najafi, R.R., and Jain, R.K., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 3029. https://doi.org/10.1016/j.bmcl.2011.03.035

    Article  PubMed  CAS  Google Scholar 

  76. Zakrzewski, J. and Krawczyk, M., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 514. https://doi.org/10.1016/j.bmcl.2010.10.092

    Article  PubMed  CAS  Google Scholar 

  77. Kalai, T., Altman, R., Maezawa, I., Balog, M., Morisseau, C., Petriova, J., Hammock, B.D., Jin, L.W., Trudell, T.R., Voss, J.C., and Hideg, K., Eur. J. Med. Chem., 2014, vol. 77, p. 343. https://doi.org/10.1016/j.ejmech.2014.03.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. M. Yousif.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousif, M.N.M., Soliman, H.A., Said, M.M. et al. Synthesis and Biological Activity of Triacetonamine. Russ J Gen Chem 90, 460–469 (2020). https://doi.org/10.1134/S1070363220030202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220030202

Keywords:

Navigation