Skip to main content
Log in

Paramagnetism of Surface Ni Atoms in Ni@C Nanocomposites. “Anomalous” Magnetic Size Effects in Ultrasmall Ni Particles: Manifestations of Surface Magnetic Anisotropy in Squid Magnetometry and FMR Spectra

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The dimensional magnetic effects of single-domain Ni nanoparticles encapsulated by a carbon shell (Ni@C nanocomposites) have been studied. The studied samples were obtained by solid-phase pyrolysis of solid solutions of nickel phthalocyanine (NiPc) and metal-free phthalocyanine (H2Pc): (NiPc)x(H2Pc)1 – x, where 0 ⩽ x ⩽ 1. The Ni concentration in the carbon matrix varied in the range of 0–12 wt %, the sizes of the average diameter of nanoparticles in different samples were from 4 to 40 nm. The paramagnetism of the surface and near-surface atoms of Ni nanoparticles, which is due to the charge transfer from the carbon matrix with the formation of Ni ions has been studied in detail. A method for determining the blocking temperature of superparamagnets in temperature measurements of the paramagnetic susceptibility in the case of high magnetic fields is considered. The magnetic characteristics, which reflect size effects in SQUID magnetometry and FMR, exhibit “anomalous” deviations in the range of ultrasmall particles. These are high values of the blocking temperature, high values of the coercive force, and the ferromagnetic resonance linewidth, as well as a significant shift of the effective g-factor in the FMR spectra. Generalizing equations are presented that include the contributions of the surface magnetic anisotropy along with the bulk magnetocrystalline anisotropy, which is consistent with the experimental results over the entire investigated range from 4  to 40 nm. It is shown that the parameters of the total magnetic resonance spectra (FMR + ESR) are caused by the ferromagnetism of the core of nickel nanoparticles and the paramagnetism of surface and near-surface Ni ions, as well as π-electrons of the organic matrix. A general diagram of the dependence of the coercive force on particle sizes for temperatures lower than the blocking temperature (T < Tb) is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Lu, A.H., Salabas, E.L., and Schüth, F., Angew. Chem. Int. Ed. Engl., 2007, vol. 46, p. 1222.

    Article  Google Scholar 

  2. Gubin, S.P., Magnetic Nanoparticles. Wiley, Weinheim, 2009.

    Book  Google Scholar 

  3. Guimaraes, A.A., Principles of Nanomagnetism, Berlin, Heidelberg, 2009.

    Book  Google Scholar 

  4. Skomski, R., J. Phys: Condens. Matter, 2013, vol. 15, p. 841.

    Google Scholar 

  5. Roduner, E., Nanoscopic Materials: Size-Dependent Phenomena. RSC Pub., Cambridge, UK, 2006.

    Book  Google Scholar 

  6. Pankhurst, Q.A., Thank, N.T.K., Jones, S.K., and Dobson, J., J. Phys. D: Appl. Phys., 2009, vol. 42, p. 224001.

    Article  ADS  Google Scholar 

  7. Zhentao, L., Chao, H., Chang, Y., and Jieshan, Q., J. Nanosci. Nanotechnol, 2009, vol. 9, p. 7473.

    Google Scholar 

  8. Ibrahim, E.M.M., Hampel, S., Kamsanipally, R., Thomas, J., Erdmann, K., Fuessel, S., Taeschner, C., Khavrus, V.O., Gemming, T., Leonhardt, A., and Buechner, B., Carbon, 2013, vol. 63, p. 358.

    Article  Google Scholar 

  9. Huang, H., Xie, Q., Kang, M., and Zhang, B., Nanotechnology, 2009, vol. 20, p. 365101-1.

    Article  Google Scholar 

  10. Park, J.K., Jung, J., Subramaniam, P., and Shah, B.P., Small, 2011, vol. 7, p. 1647.

    Article  Google Scholar 

  11. Manukyan, A., Elsukova, A., Mirzakhanyan, A., Gyulasaryan, H., Kocharian, A., Sulyanov, S., Spasova, M., Roumer, F., Farle, M., and Sharoyan, E., J. Magn. Magn. Mater., 2018, vol. 467, p. 150.

    Article  ADS  Google Scholar 

  12. Manukyan, A.S., Mirzakhanyan, A.A., Badalyan, G.R., Shirinyan, G.H., and Sharoyan, E.G., J. Contemp. Phys., 2010, vol. 45 p. 132.

    Article  Google Scholar 

  13. Manukyan, A., Mirzakhanyan, A., Sajti, L., Khachaturyan, R., Kaniukov, E., Lobanovsky, L., and Sharoyan, E., NANO, 2015, vol. 10, p. 1550089-1.

    Article  Google Scholar 

  14. Manukyan, A., Gyulasaryan, H., Kocharian, A., Estiphanos, M., Bernal, O., and Sharoyan, E., J. Magn. Magn. Mater., 2019, vol. 488, p. 165336.

    Article  Google Scholar 

  15. Kittel, C., Introduction to Solid State Physics. New York, Wiley, 2005.

    Google Scholar 

  16. Bødker, F., Mørup, S., and Linderoth, S., Phys. Rev. Lett., 1994, vol. 72, p. 282.

    Article  ADS  Google Scholar 

  17. Dimitrov, D.A. and Wysin, G.M., Phys. Rev. B, 1994, vol. 50, p. 3077.

    Article  ADS  Google Scholar 

  18. Dimitrov, D.A. and Wysin, G.M., Phys. Rev. B, 1995, vol. 51, p. 11947.

    Article  ADS  Google Scholar 

  19. Respaud, M., Broto, J.M., Rakoto, H., Fert, A.R., Thomas, L., Barbara, B., Verelst, M., Snoeck, E., Lecante, P., Mosset, A., Osuna, J., Ely, T.O., Amienis, C., and Chaudret, B., Phys. Rev. B, 1998, vol. 57, p. 2925.

    Article  ADS  Google Scholar 

  20. Bean, C.P. and Livingston, J.D., J. Appl. Phys., 1959, vol. 30, p. 120.

    Article  ADS  Google Scholar 

  21. Manukyan, A.S., Mirzakhanyan, A.A., Badalyan, G.R., Shirinyan, G.H., Fedorenko, A.G., Lianguzov, N.V., Yuzyuk, Yu.I., Bugaev, L.A., and Sharoyan, E.G., J. Nanopart. Res., 2012, vol. 14, p. 982.

    Article  ADS  Google Scholar 

  22. Sharoyan, E.G., Mirzakhanyan, A.A., Gyulasaryan, H.T., Kocharian, A.N., and Manukyan, A.S., J. Contemp. Phys., 2017, vol. 52, p. 147.

    Article  Google Scholar 

  23. Berger, R., Kliava, J., and Bissey, J.-C., J. Appl. Phys., 2000, vol. 87, p. 7389.

    Article  ADS  Google Scholar 

  24. Berger, R., Bissey, J.-C., Kliava, J., Daubric, H., and Estournes, C., J. Magn. Magn. Mater., 2001, vol. 234, p. 535.

    Article  ADS  Google Scholar 

  25. Manukyan, A., Gyulasaryan, H., Kocharian, A., Oyala, P., Chumakov, R., Avramenko, M., Sanchez, C., Bernal, O., Bugaev, L., and Sharoyan, E., J. Phys. Chem. C, 2022, vol. 126, p. 493.

    Article  Google Scholar 

  26. Dorfman, Y.G., JETP, 1965, vol. 21, p. 472.

    ADS  Google Scholar 

  27. Dormann, J.L., Fiorani, D., and Tronc, E., in: I. Prigogine, S.A. Rice (Eds.), Advances in Chemical Physics, vol. 98, Wiley, New York, 1997.

    Google Scholar 

  28. Leslie-Pelecky, D. and Rieke, R.D., Chem. Mater., 1996, vol. 8, p. 1770.

    Article  Google Scholar 

  29. Stoner, E.C. and Wohlfarth, E.P., Phil. Trans. Roy. Soc., 1948, vol. 240, p. 599.

    ADS  Google Scholar 

  30. Smirnov, S.I. and Komogortsev, S.V., J. Magn. Magn. Mater., 2008, vol. 320, p. 1123.

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Science Committee of RA, in the frames of project N 1-6/23-I/IPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Manukyan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Musakhanyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharoyan, E.G., Gyulasaryan, H.T. & Manukyan, A.S. Paramagnetism of Surface Ni Atoms in Ni@C Nanocomposites. “Anomalous” Magnetic Size Effects in Ultrasmall Ni Particles: Manifestations of Surface Magnetic Anisotropy in Squid Magnetometry and FMR Spectra. J. Contemp. Phys. 58, 287–298 (2023). https://doi.org/10.1134/S1068337223030155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068337223030155

Keywords:

Navigation