Skip to main content
Log in

Synthesis, Structure, and In Vitro Pharmacological Evaluation of some New Pyrimidine-2-Sulfonamide Derivatives and Their Molecular Docking Studies on Human Estrogen Receptor Alpha and CDK2/Cyclin Proteins

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

In this approach, novel pyrimidine-2-sulfonamide derivatives based on the 2H-chromen-2-one moiety were synthesized and evaluated as anticancer and antibacterial agents. Molecular docking studies have been conducted to investigate the interactions of these compounds with human estrogen receptor alpha (ERα) and 4CDK2/Cyclin proteins. The studies have shown that these derivatives can bind to (ERα and 4CDK2/Cyclin) proteins with high affinity, suggesting that they may have potential as anti-cancer agents. The cytotoxicity of these compounds was investigated in vitro against MCF-7 and HCT-116 cancer cell lines, with encouraging results being obtained for some of the tested derivatives. In addition, antibacterial studies revealed that some of the synthesized derivatives exhibited effectiveness against tested microorganisms compared to the well-established antibacterial drug Ciprofloxacin. Further, molecular interaction studies revealed that the synthesized molecules have a significant binding affinity toward human estrogen receptor Alpha and CDK2/cyclin A proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme 1.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Gamelin, F.X., Baquet, G., Berthoin, S., Thevenet, D., Nourry, C., Nottin, S., and Bosquet, L., Eur. J. Appl. Physiol., 2008, vol. 105, pp. 731–738. https://doi.org/10.1007/s00421-008-0955-8

    Article  PubMed  Google Scholar 

  2. Kumar, S. and Narasimhan, B., Chem. Cent. J., 2018, vol. 12, pp. 38–67. https://doi.org/10.1186/s13065-018-0406-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, P., Yang, Y., Tang, Y., Yang, T., Sang, Z., Liu, Z., Zhang, T., Luo, Y., Eur. J. Med. Chem., vol. 163, pp. 169–182. https://doi.org/10.1016/j.ejmech.2018.11.054

  4. Azam, M., Kumar, B.R.P., Shalini, S., Suresh, B., Reddy, T., and Reddy, C., Indian J. Pharm. Sci., 2008, vol. 70, p. 672. https://doi.org/10.4103/0250-474x.45416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Savateev, K.V., Fedotov, V.V., Rusinov, V.L., Kotovskaya, S.K., and Spasov, A.A., Molecules, 2022, vol. 27, p. 274. https://doi.org/10.3390/molecules27010274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh, K., Kaur, H., Smith, P., de Kock, C., Chibale, K., and Balzarini, J., J. Med. Chem., 2013, vol. 57, pp. 435–448. https://doi.org/10.1021/jm4014778

    Article  CAS  PubMed  Google Scholar 

  7. Ugwu, D., Okoro, U., and Mishra, N., J. Serb. Chem. Soc., 2018, vol. 83, pp. 401–409. https://doi.org/10.2298/jsc170127109u

    Article  CAS  Google Scholar 

  8. Sukanya, S.H., Venkatesh, T., Aditya Rao, S.J., and Joy, M.N., J. Mol. Struct., 2022, vol. 1247, p. 131324. https://doi.org/10.1016/j.molstruc.2021.131324

    Article  CAS  Google Scholar 

  9. Schultz, D.C., Johnson, R.M., Ayyanathan, K., Miller, J., Whig, K., Kamalia, B., Dittmar, M., Weston, S., Hammond, H.L., Dillen, C., Ardanuy, J., Taylor, L., Lee, J.S., Li, M., Lee, E., Shoffler, C., Petucci, C., Constant, S., Ferrer, M., Thaiss, C.A., Frieman, M.B., and Cherry, S., Nature, 2022, vol. 604, pp. 134–140. https://doi.org/10.1038/s41586-022-04482-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keche, A.P., Hatnapure, G.D., Tale, R.H., Rodge, A.H., Birajdar, S.S., and Kamble, V.M., Bioorg. Med. Chem. Lett., 2012, vol. 22, pp. 3445–3448. https://doi.org/10.1016/j.bmcl.2012.03.092

    Article  CAS  PubMed  Google Scholar 

  11. Karale, B.K., Gill, C.H., Khan, M., Chavan, V.P., Mane, A.S., and Shingare, M.S., ChemInform, 2003, vol. 34, Article ID: 1157. https://doi.org/10.1002/chin.200301157

  12. Chavan, V.P., Sonawane, S.A., Shingare, M.S., and Karale, B.K., Chem. Heterocycl. Compd., 2006, vol. 42, pp. 625–630. https://doi.org/10.1007/s10593-006-0137-8

    Article  CAS  Google Scholar 

  13. Sukanya, S.H., Venkatesh, T., Aditya Rao, S.J., and Pandith, A., J. Mol. Struct., 2022, vol. 1267, p. 133587. https://doi.org/10.1016/j.molstruc.2022.133587

    Article  CAS  Google Scholar 

  14. Pereira, T.M., Franco, D.P., Vitorio, F., and Kummerle, A.E., Curr. Top. Med. Chem., 2018, vol. 18, pp. 124–148. https://doi.org/10.2174/1568026618666180329115523

    Article  CAS  PubMed  Google Scholar 

  15. Sun, X., Liu, T., Sun, J., and Wang, X., RSC Adv., 2020, vol. 10, pp. 10826–10847. https://doi.org/10.1039/c9ra10290f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rao Rao Shimoga Janakirama, A., Mathad Shivayogi, S., Kolkar Satyanarayana, J., and Chapeyil Kumaran, R., BioImpacts, 2020, vol. 11, pp. 187–197. https://doi.org/10.34172/bi.2021.09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, B., Omoto, Y., Iwase, H., Yamashita, H., Toyama, T., Coombes, R.C., Filipovic, A., Warner, M., and Gustafsson, J.-Å., Proc. Natl. Acad. Sci., 2014, vol. 111, pp. 1933–1938. https://doi.org/10.1073/pnas.1323719111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ropero, A.B., Alonso-Magdalena, P., Quesada, I., and Nadal, A., Steroids, 2008, vol. 73, pp. 874–879. https://doi.org/10.1016/j.steroids.2007.12.018

    Article  CAS  PubMed  Google Scholar 

  19. Vitale, C., Fini, M., Speziale, G., and Chierchia, S., Fundam. Clin. Pharmacol., 2010, vol. 24, pp. 675–685. https://doi.org/10.1111/j.1472-8206.2010.00817.x

    Article  CAS  PubMed  Google Scholar 

  20. Yejella, R.P. and Atla, S.R., Chem. Pharm. Bull., 2011, vol. 59, pp. 1079–1082. https://doi.org/10.1248/cpb.59.1079

    Article  CAS  Google Scholar 

  21. Liu, S., Bolger, J.K., Kirkland, L.O., Premnath, P.N., and McInnes, C., ACS Chem. Biol., 2010, vol. 5, pp. 1169–1182. https://doi.org/10.1021/cb1001262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meijer, L. and Raymond, E., Acc. Chem. Res., 2003, vol. 36, pp. 417–425. https://doi.org/10.1021/ar0201198

    Article  CAS  PubMed  Google Scholar 

  23. Zheleva, D.I., McInnes, C., Gavine, A.-L., Zhelev, N.Z., Fischer, P.M., and Lane, D.P., J. Pept. Res., 2002, vol. 60, pp. 257–270. https://doi.org/10.1034/j.1399-3011.2002.21014.x

    Article  CAS  PubMed  Google Scholar 

  24. Vesely, J., Havlicek, L., Strnad, M., Blow, J.J., Donella-Deana, A., Pinna, L., Letham, D.S., Kato, J., Detivaud, L., Leclerc, S., and Meijer, L., Eur. J. Chem., 1994, vol. 224, pp. 771–786. https://doi.org/10.1111/j.1432-1033.1994.00771.x

    Article  CAS  Google Scholar 

  25. Shin, S.C., El-Damasy, A.K., Lee, J.H., Seo, S.H., Kim, J.H., Seo, Y.H., Lee, Y., Yu, J.H., Bang, E.K., Kim, E.E., and Keum, G., Int. J. Mol. Sci., 2020, vol. 21, p. 9377. https://doi.org/10.3390/ijms21249377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Falasco, L., World Pat. Inf., 2002, vol. 24, pp. 31–33. https://doi.org/10.1016/s0172-2190(01)00068-0

    Article  CAS  Google Scholar 

  27. Hoessel, R., Leclerc, S., Endicott, J.A., Nobel, M.E.M., Lawrie, A., Tunnah, P., Leost, M., Damiens, E., Marie, D., Marko, D., Niederberger, E., Tang, W., Eisenbrand, G., and Meijer, L., Nat. Cell Biol., 1999, vol. 1, pp. 60–67. https://doi.org/10.1038/9035

    Article  CAS  PubMed  Google Scholar 

  28. Chen, H., Van Duyne, R., Zhang, N., Kashanchi, F., and Zeng, C., Proteins: Struct. Funct., 2009, vol. 74, pp. 122–132. https://doi.org/10.1002/prot.22136

  29. Betzi, S., Alam, R., Martin, M., Lubbers, D.J., Han, H., Jakkaraj, S.R., Georg, G.I., and Schönbrunn, E., ACS Chem. Biol., 2011, vol. 6, pp. 492–501. https://doi.org/10.1021/cb100410m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eldehna, W.M., Maklad, R.M., Almahli, H., Al-Warhi, T., Elkaeed, E.B., Abourehab, M.A.S., Abdel-Aziz, H.A., and El Kerdawy, A.M., J. Enzyme Inhib. Med. Chem., 2022, vol. 37, pp. 1227–1240. https://doi.org/10.1080/14756366.2022.2062337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kakarala, K.K. and Jamil, K., Curr. Comput. Aided Drug Des., 2022, vol. 18, pp. 506–518. https://doi.org/10.2174/1573409919666221031110341

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y., Zhang, J., Gao, W., Zhang, L., Pan, Y., Zhang, S., and Wang, Y., Int. J. Mol. Sci., 2015, vol. 16, pp. 9314–9340. https://doi.org/10.3390/ijms16059314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oza, K.K., Jani, D.H., and Patel, H.S., Appl. Organomet. Chem., 2010, vol. 25, pp. 154–161. https://doi.org/10.1002/aoc.1730

    Article  CAS  Google Scholar 

  34. Pan, S.C., Am. J. Trop. Med. Hyg., 1984, vol. 33, pp. 1040–1040. https://doi.org/10.4269/ajtmh.1984.33.5.tm0330051040a

    Article  Google Scholar 

  35. Gul, H.I., Sahin, F., Gul, M., Ozturk, S., and Yerdelen, K.O., Archiv der Pharmazie, 2005, vol. 338, pp. 335–338. https://doi.org/10.1002/ardp.200400962

    Article  CAS  PubMed  Google Scholar 

  36. Li, W., Zhou, J., and Xu, Y., Biomed. Rep., 2015, vol. 3, pp. 617–620. https://doi.org/10.3892/br.2015.481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Teh, C.H., Nazni, W.A., Nurulhusna, A.H., Norazah, A., and Lee, H.L., BMC Microbiol., 2017, vol. 17, p. 36. https://doi.org/10.1186/s12866-017-0936-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mallikarjunaswamy, C., Mallesha, L., Bhadregowda, D.G., and Pinto, O., Arab. J. Chem., 2017, vol. 10, pp. S484–S490. https://doi.org/10.1016/j.arabjc.2012.10.008

  39. Mallesha, L. and Mohana, K.N., Eur. J. Chem., 2011, vol. 2, pp. 193–199. https://doi.org/10.5155/eurjchem.2.2.193-199.282

    Article  CAS  Google Scholar 

  40. Paterni, I., Granchi, C., Katzenellenbogen, J.A., and Minutolo, F., Steroids, 2014, vol. 90, pp. 13–29.

    Article  CAS  PubMed  Google Scholar 

  41. Chang, E.C., Frasor, J., Komm, B., and Katzenellenbogen, B.S., Endocrinology, 2006, vol. 147, pp. 4831–4842. https://doi.org/10.1210/en.2006-0563

    Article  CAS  PubMed  Google Scholar 

  42. Hympanova, M., Terlep, S., Markova, A., Prchal, L., Dogsa, I., Pulkrabkova, L., Benkova, M., Marek, J., and Stopar, D., Front Microbiol., 2020, vol. 11, Article ID: 573951. https://doi.org/10.3389/fmicb.2020.573951

  43. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., J. Comput. Chem., 2009, vol. 30, pp. 2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Janakirama Rao, A.S., Mudduraj Urs, V.T., Devanna, J.N., Mahadevappa, P., and Kumaran, R.C., Lett. Drug. Des. Discov., 2021, vol. 18, pp. 445–453. https://doi.org/10.2174/1570180817999201104120815

    Article  CAS  Google Scholar 

  45. Rao, S.J.A. and Shetty, N.P., Microb. Pathog., 2022, vol. 165, p. 105497. https://doi.org/10.1016/j.micpath.2022.105497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J., J. Comput. Chem., 1998, vol. 19, pp. 1639–1662. https://doi.org/10.1002/(SICI)1096-987X

    Article  CAS  Google Scholar 

  47. Soenen, S.J., Manshian, B., Montenegro, J.M., Amin, F., Meermann, B., Thiron, T., Cornelissen, M., Vanhaecke, F., Doak, S., Parak, W.J., De Smedt, S., and Braeckmans, K., ACS Nano, 2012, vol. 6, pp. 5767–5783. https://doi.org/10.1021/nn301714n

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research work was funded by Institutional Fund Projects under grant no. IFPIP-301-130-1443. The authors gratefully acknowledge technical and financial support provided by the ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

The authors QAJ, AHS, MA, AKA, and SMA—selected the literature data on the review topic. The authors IA, HP, HAA, FM, SYA, AMR, MSA, and ARS—contributed to manuscript preparation.

All authors participated in the discussions.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaber, Q.A.H., Shentaif, A.H., Almajidi, M. et al. Synthesis, Structure, and In Vitro Pharmacological Evaluation of some New Pyrimidine-2-Sulfonamide Derivatives and Their Molecular Docking Studies on Human Estrogen Receptor Alpha and CDK2/Cyclin Proteins. Russ J Bioorg Chem 49 (Suppl 1), S106–S118 (2023). https://doi.org/10.1134/S1068162023080095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023080095

Keywords:

Navigation