Skip to main content

Advertisement

Log in

Synthesis and Biological Activity of N-Acylhydrazones

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

The synthesis of hybrid molecules that contain fragments of natural compounds and pharmacophore groups makes it possible to develop a wide range of new biologically active compounds. The acylhydrazone fragments are present in many biologically active molecules and give them various types of pharmacological activity, i.e., antibacterial, antituberculosis, antifungal, antitumor, anti-inflammatory, anticonvulsant, antiviral, and antiprotozoal properties. In this review, we consider examples of the synthesis of N-acylhydrazones with a structure based on natural and synthetic compounds and provide data on their pharmacological properties, i.e., antituberculosis activity (against Mycobacterium tuberculosis H37Rv), antimicrobial and bactericidal activity, antiviral (against influenza viruses, herpes simplex type 1, Epstein–Barr virus, and human immunodeficiency virus), anti-inflammatory (including analgesic) activity, antitumor activity (against cancer cells of the lungs, breast, stomach, liver, colon, etc.), and pesticide activity (fungicides, larvicides, insecticides, and growth regulators).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Nurkenov, O.A., Satpaeva, Zh.B., Kulakov, I.V., Akhmetova, S.B., and Zhaugasheva, S.K., Russ. J. Gen. Chem., 2012, vol. 82, pp. 668–671. https://doi.org/10.1134/S107036321204010X

    Article  CAS  Google Scholar 

  2. Kolotova, N.V., Starkova, A.V., and Chashchina, S.V., Voprosy obespecheniya kachestva lekarstvennykh sredstv, 2016, vol. 3, no. 13, pp. 15–23.

  3. Smith, M.B. and March, J., March’s Advanced Organic Chemistry, Milton, Australia: John Wiley & Sons, 2007, 6th edition.

    Google Scholar 

  4. Lazny, R. and Nodzewska, A., Chem. Rev., 2010, vol. 110, pp. 1386–1434. https://doi.org/10.1021/cr900067y

    Article  CAS  Google Scholar 

  5. Belkheiri, N., Bouguerne, B., Bedos-Belval, F., Duran, H., Bernis, C., Salvayre, R., Negre-Salvayre, A., and Baltas, M., Eur. J. Med. Chem., 2010, vol. 45, pp. 3019–3026. https://doi.org/10.1016/j.ejmech.2010.03.031

    Article  CAS  Google Scholar 

  6. Radwan, M.A., Ragab, E.A., Sabry, N.M., and El-Shenawy, S.M., Bioorg. Med. Chem., 2007, vol. 15, pp. 3832–3841. https://doi.org/10.1016/j.bmc.2007.03.024

    Article  CAS  Google Scholar 

  7. Almasirad, A., Tajik, M., Bakhtiari, D., Shafiee, A., Abdollahi, M., Zamani, M.J., Khorasani, R., and Esmaily, H., J. Pharm. Pharm. Sci., 2005, vol. 8, pp. 419–425.

    CAS  Google Scholar 

  8. Sridhar, S.K., Pandeya, S.N., Stables, J.P., and Ramesh, A., Eur. J. Pharm. Sci., 2002, vol. 16, pp. 129–132. https://doi.org/10.1016/s0928-0987(02)00077-5

    Article  CAS  Google Scholar 

  9. Kaushik, D., Khan, S.A., Chawla, G., and Kumar, S., Eur. J. Med. Chem., 2010, vol. 45, pp. 3943–3949. https://doi.org/10.1016/j.ejmech.2010.05.049

    Article  CAS  Google Scholar 

  10. Duarte, C.D., Barreiro, E.J., and Fraga, C.A., Mini-Rev. Med. Chem., 2007, vol. 7, pp. 1108–1119. https://doi.org/10.2174/138955707782331722

    Article  CAS  Google Scholar 

  11. Salgin-Gökşen, U., Gökhan-Kelekçi, N., Göktaş, Ö., Köysal, Y., Kiliç, E., Işik, S., Aktay, G., and Ö zalp, M., Bioorg. Med. Chem., 2007, vol. 15, pp. 5738–5751. https://doi.org/10.1016/j.bmc.2007.06.006

    Article  CAS  Google Scholar 

  12. Deeb, A., El-Mariah, F., and Hosny, M., Bioorg. Med. Chem. Lett., 2004, vol. 4, pp. 5013–5017. https://doi.org/10.1016/j.bmcl.2004.06.102

    Article  CAS  Google Scholar 

  13. Rasras, A.J.M., Al-Tel, T.H., Al-Aboudi, A.F., and Al-Qawasmeh, R.A., Eur. J. Med. Chem., 2010, vol. 45, pp. 2307–2313. https://doi.org/10.1016/j.ejmech.2010.02.006

    Article  CAS  Google Scholar 

  14. Özkay, Y., Tunali, Y., Karaca, H., and Işikdağ, I., Eur. J. Med. Chem., 2010, vol. 45, pp. 3293–3298. https://doi.org/10.1016/j.ejmech.2010.04.012

    Article  CAS  Google Scholar 

  15. Kumar, D., Maruthi, KumarN., Ghosh, S., and Shah, K., Bioorg. Med. Chem. Lett., 2012, vol. 22, pp. 212–215. https://doi.org/10.1016/j.bmcl.2011.11.031

    Article  CAS  Google Scholar 

  16. Effenberger, K., Breyer, S., and Schobert, R., Eur. J. Med. Chem., 2010, vol. 45, pp. 1947–1954. https://doi.org/10.1016/j.ejmech.2010.01.037

    Article  CAS  Google Scholar 

  17. Jordāo, A.K., Sathler, P.C., Ferreira, V.F., Campos, V.R., de Souza, M.C., Castro, H.C., Lannes, A., Lourenco, A., Rodrigues, C.R., Bello, M.L., Lourenco, M.C., Carvalho, G.S., Almeida, M.C., and Cunha, A.C., Bioorg. Med. Chem., 2011, vol. 19, pp. 5605–5611. https://doi.org/10.1016/j.bmc.2011.07.035

    Article  CAS  Google Scholar 

  18. Mahajan, A., Kremer, L., Louw, S., Guérardel, Y., Chibale, K., and Biot, C., Bioorg. Med. Chem. Lett., 2011, vol. 21, pp. 2866–2868. https://doi.org/10.1016/j.bmcl.2011.03.082

    Article  CAS  Google Scholar 

  19. Zelenin, K.N., Sorosovskii Obrazovatel’nyi Zhurnal, 1998, vol. 42, no. 5, pp. 59–65.

  20. Stoica, A.-I., Vinas, C., and Texidor, F., Chem. Commun., 2008, vol. 48, pp. 6492–6494. https://doi.org/10.1039/B813285B

    Article  Google Scholar 

  21. Rollas, S. and Küçükgüzel, Ş.G., Molecules, 2007, vol. 12, pp. 1910–1939. https://doi.org/10.3390/12081910

    Article  CAS  Google Scholar 

  22. Dogan, H.N., Duran, A., Rollas, S., Şener, G., Armutak, Y., and Keyer-Uysal, M., Med. Sci. Res., 1998, vol. 26, pp. 755–758.

    CAS  Google Scholar 

  23. Kalsi, R., Shrimali, M., Bhalla, T.N., and Barthwal, J.P., Ind. J. Pharm. Sci., 2006, vol. 41, pp. 353––359.

    Google Scholar 

  24. Mohareb, R.M., Fleita, D.H., and Sakka, O.K., Molecules, 2011, vol. 16, pp. 16–27. https://doi.org/10.3390/molecules16010016

    Article  CAS  Google Scholar 

  25. Popiołek, Ł., Biernasiuk, A., and Malm, A., Phosphorus Sulfur Silicon Relat. Elem., 2015, vol. 190, pp. 251–260. https://doi.org/10.1080/10426507.2014.919293

    Article  CAS  Google Scholar 

  26. Popiołek, Ł., Stefańska, J., Kiełczykowska, M., Musik, I., Biernasiuk, A., Malm, A., and Wujec, M., J. Heterocycl. Chem., 2016, vol. 53, pp. 393–402. https://doi.org/10.1002/jhet.2418

    Article  CAS  Google Scholar 

  27. Popiołek, Ł., Biernasiuk, A., and Malm, A., J. Heterocycl. Chem., 2016, vol. 53, pp. 479–486. https://doi.org/10.1002/jhet.2429

    Article  CAS  Google Scholar 

  28. Bala, S., Uppal, G., Kajal, A., Kamboj, S., and Sharma, V., Int. J. Pharm. Sci. Rev. Res., 2013, vol. 18, pp. 65–74.

    CAS  Google Scholar 

  29. Popiołek, L., Biernasiuk, A., and Malm, A., Phosphorus Sulfur Silicon Relat. Elem., 2015, vol. 190, pp. 251–260. https://doi.org/10.1080/10426507.2014.919293

    Article  CAS  Google Scholar 

  30. Gawrońska-Grzywacz, M., Popiołek, Ł., Natorska-Chomicka, D., Piatkowska-Chmiel, I., Izdebska, M., Herbet, M., and Wujec, M., Oncol. Rep., vol. 41, pp. 693–701. https://doi.org/10.3892/or.2018.6800

  31. Popiołek, Ł. and Biernasiuk, A., J. Enzym. Inhib. Med. Chem., 2016, vol. 31, pp. 62–69. https://doi.org/10.3109/14756366.2016.1170012

    Article  CAS  Google Scholar 

  32. Popiołek, Ł. and Biernasiuk, A., Chem. Biol. Drug Des., 2016, vol. 88, pp. 873–883. https://doi.org/10.1111/cbdd.12820

    Article  CAS  Google Scholar 

  33. Mukovoz, P.P. and Koz’minykh, V.O., Izvestiya Vysshikh Uchebnykh Zavedenii. Povolzhskii Region, 2013, no. 2, pp. 88–101.

  34. Taradeiko, T.I., Galasheva, S.N., Kut’kina, D.N., Shchennikova, O.B., and Iozep, A.A., Razrabotka i Registratsiya Lekarstvennykh Sredstv, 2018, no. 2, pp. 86–90.

  35. Gubaeva, R.A., Shabalina, Yu.V., and Khaliullin, F.A., Bashkirskii Khimicheskii Zhurnal, 2011, vol. 18, pp. 109–110.

  36. Myasoedova, Yu.V., Belyaeva, E.R., Garifullina, L.R., Prosvirnina, D.A., and Ishmuratov, G.Yu., Russ. J. Gen. Chem., 2022.

  37. Kitaev, Yu.P. and Buzykin, B.I., Gidrazony (Hydrozones), Moscow: Nauka, 1974.

    Google Scholar 

  38. Verma, G., Marella, A., Shaquiquzzaman, M., Akhtar, M., Ali, M.R., and Alam, M.M., J. Pharm. BioAllied Sci., 2014, vol. 6, pp. 69–80. https://doi.org/10.4103/0975-7406.129170

    Article  CAS  Google Scholar 

  39. Koleno, D.I., Nauka i Sovremennost’. Khimicheskie Nauki, 2012, no. 17, pp. 241–244.

  40. Zhao, Z.X., Cheng, L.P., and Pang, W., Tetrahedron Lett., 2018, vol. 59, pp. 2079–2081. https://doi.org/10.1016/j.tetlet.2018.04.047

    Article  CAS  Google Scholar 

  41. Jordão, A.K., Sathler, P.C., Ferreira, V.F., Campos, V.R., de Souza, M.C., Castro, H.C., Lannes, A., Lourenco, A., Rodrigues, C.R., Bello, M.L., Lourenco, M.C., Carvalho, G.S., Almeida, M.C., and Cunha, A.C., Bioorg. Med. Chem., 2011, vol. 19, pp. 5605–5611. https://doi.org/10.1016/j.bmc.2011.07.035

    Article  CAS  Google Scholar 

  42. Bedia, K.K., Elçcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R., and Dimoglo, A.S., Eur. J. Med. Chem., 2006, no. 41, pp. 1253–1261. https://doi.org/10.1016/j.ejmech.2006.06.009

  43. Camus, J.C., Pryor, M.J., Médigue, C., and Cole, S.T., Microbiology, 2002, vol. 148, pp. 2967–2973. https://doi.org/10.1099/00221287-148-10-2967

    Article  CAS  Google Scholar 

  44. Kazunin, M.S. and Priimenko, B.A., Aktual’nye problemy Meditsiny, 2013, vol. 25, no. 24, pp. 226–231.

  45. Hernández, P., Rojas, R., Gilman, R.H., Sauvain, M., Lima, L.M., Barreiro, E.J., González, M., and Cerecetto, H., Eur. J. Med. Chem., 2013, vol. 59, pp. 64–74. https://doi.org/10.1016/j.ejmech.2012.10.047

    Article  CAS  Google Scholar 

  46. Vergara, F.M., Lima, C.H., Henriques, M., Candéa, A.L., Lourenço, M.C., Ferreira, M., Kaiser, C.R., and de Souza, M.V., Eur. J. Med. Chem., 2009, vol. 44, pp. 4954–4959. https://doi.org/10.1016/j.ejmech.2009.08.009

    Article  CAS  Google Scholar 

  47. Rivers, E.C. and Mancera, R.L., Drug Discov. Today, 2008, vol. 13, pp. 1090–1098. https://doi.org/10.1016/j.drudis.2008.09.004

    Article  CAS  Google Scholar 

  48. Barry, P.J. and O’Connor, T.M., Curr. Med. Chem., 2007, vol. 14, pp. 2000–2008. https://doi.org/10.2174/092986707781368496

    Article  CAS  Google Scholar 

  49. Boogaard, J., Kibiki, G.S., Kisanga, E.R., Boeree, M.J., and Aarnoutse, R.E., Antimicrob. Agents Chemother., 2009, vol. 53, pp. 849–862. https://doi.org/10.1128/AAC.00749-08

    Article  CAS  Google Scholar 

  50. Ludwig, B.S., Correia, D.G., and Kühn, F.E., Coord. Chem. Rev., 2019, vol. 396, pp. 22–48. https://doi.org/10.1016/j.ccr.2019.06.004

    Article  CAS  Google Scholar 

  51. Hillard, E., Vessières, A., Thouin, L., Jaouen, G., and Amatore, C., Angew. Chem., 2006, vol. 45, pp. 285–290. https://doi.org/10.1002/anie.20050292

    Article  CAS  Google Scholar 

  52. Payen, O., Top, S., Vessières, A., Brulé, E., Plamont, M.A., McGlinchey, M.J., Müller-Bunz, H., and Jaouen, G., J. Med. Chem., 2008, vol. 51, pp. 1791–1799. https://doi.org/10.1021/jm701264d

    Article  CAS  Google Scholar 

  53. Dubar, F., Anquetin, G., Pradines, B., Khalife, J., and Biot, C., J. Med. Chem., 2009, vol. 52, pp. 7954–7957. https://doi.org/10.1021/jm901357n

    Article  CAS  Google Scholar 

  54. Biot, C., Daher, W., Chavain, N., Fandeur, T., Khalife, J., Dive, D., and De Clercq, E., J. Med. Chem., 2006, vol. 49, pp. 2845–2849. https://doi.org/10.1021/jm0601856

    Article  CAS  Google Scholar 

  55. Blackie, M.A., Beagley, P., Croft, S.L., Kendrick, H., Moss, J.R., and Chibale, K., Bioorg. Med. Chem., 2007, vol. 20, pp. 6510–6516. https://doi.org/10.1016/j.bmc.2007.07.012

    Article  CAS  Google Scholar 

  56. Biot, C., François, N., Maciejewski, L., Brocard, J., and Poulain, D., Bioorg. Med. Chem. Lett., 2000, vol. 10, pp. 839–841. https://doi.org/10.1016/s0960-894x(00)00120-7

    Article  CAS  Google Scholar 

  57. Baramee, A., Coppin, A., Mortuaire, M., Pelinski, L., Tomavo, S., and Brocard, J., Bioorg. Med. Chem., 2006, vol. 14, pp. 1294–1302. https://doi.org/10.1016/j.bmc.2005.09.054

    Article  CAS  Google Scholar 

  58. Higgins, P.J. and Gellett, A.M., Bioorg. Med. Chem. Lett., 2009, vol. 19, pp. 1614–1617. https://doi.org/10.1016/j.bmcl.2009.02.023

    Article  CAS  Google Scholar 

  59. Maguene, G.M., Jakhlal, J., Ladyman, M., Vallin, A., Ralambomanana, D.A., Bousquet, T., Maugein, J., Lebibi, J., and Pélinski, L., Eur. J. Med. Chem., 2011, vol. 46, pp. 31–38. https://doi.org/10.1016/j.ejmech.2010.10.004

    Article  CAS  Google Scholar 

  60. Kataev, V.E., Militsina, O.I., Strobykina, I.Yu., Kovylyaeva, G.I., Musin, R.Z., Fedorova, O.V., Rusinov, G.L., Zueva, M.N., Mordovskoi, G.G., and Tolstikov, A.G., Khim.-farm. zhurnal, 2006, vol. 40, no. 9, pp. 12–27.

  61. Andreeva, O.V., Sharipova, R.R., Strobykina, I.Yu., Lodochnikova, O.A., Dobrynin, A.B., Babaev, V.M., Chestnova, R.V., Mironov, V.F., and Kataev, V.E., Zhurn. Obshch. Khimii, 2011, vol. 81, no. 8, pp. 1298–1305.

    Google Scholar 

  62. Lin, H., Doebelin, C., Patouret, R., Garcia-Ordonez, R., Chang, M., Dharmarajan, V., Bayona, C., Cameron, M., Griffin, P., and Kamenecka, T, Bioorg. Med. Chem. Lett., 2018, vol. 28, pp. 1313–1319. https://doi.org/10.1016/j.bmcl.2018.03.019

  63. Kumar, P., Narasimhan, B., Sharma, D., Judge, V., and Narang, R., Eur. J. Med. Chem., 2009, vol. 44, pp. 1853–1863. https://doi.org/10.1016/j.ejmech.2008.10.034

    Article  CAS  Google Scholar 

  64. Vlasova, N.A., Kurbatov, E.R., Korkodinova, L.M., Odegova, T.F., and Vizgunova, O.L., Vestn. Voronezh. Gos. Un-ta. Seriya: Khimiya. Biologiya. Farmatsiya, 2013, no. 2, pp. 27–30.

  65. Shmatkova, N.V., Seifullina, I.I., Zinchenko, O.Yu., and Linenko, I.S., Visnik Odes’kogo Natsional’nogo Universitetu. Khimiya, 2016, vol. 21, no. 1, pp. 36–49.

    CAS  Google Scholar 

  66. He, J.B., Feng, L.L., Li, J., Tao, R.J., Ren, Y.L., Wan, J., and He, H.W., Bioorg. Med. Chem., 2014, vol. 22, pp. 89–94. https://doi.org/10.1016/j.bmc.2013.11.051

    Article  CAS  Google Scholar 

  67. He, H., Xia, H., Xia, Q., Ren, Y., and He, H., Bioorg. Med. Chem., 2017, vol. 25, pp. 5652–5661. https://doi.org/10.1016/j.bmc.2017.08.038

    Article  CAS  Google Scholar 

  68. Morjan, R.Y., Mkadmh, A.M., Beadham, I., Elmanama, A.A., Mattar, M.R., Raftery, J., Pritchard, R.G., Awadallah, A.M., and Gardiner, J.M., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 5796–5800. https://doi.org/10.1016/j.bmcl.2014.10.029

    Article  CAS  Google Scholar 

  69. Sarshira, E.M., Hamada, N.M., Moghazi, Y.M., and Abdelrahman, M.M., J. Heterocycl. Chem., 2016, vol. 53, pp. 1970–1982. https://doi.org/10.1002/JHET.2516

    Article  CAS  Google Scholar 

  70. Plech, T., Paneth, A., Kaproń, B., Kosikowska, U., Malm, A., Strzelczyk, A., and Stączek, P., Chem. Biol. Drug Des., 2015, vol. 85, pp. 315–325. https://doi.org/10.1111/cbdd.12392

    Article  CAS  Google Scholar 

  71. El-Mahdy, K., El-Kazak, A., Abdel-Megid, M., Seada, M., and Farouk, O., Acta Chim. Slov., 2016, vol. 63, pp. 18–25. https://doi.org/10.17344/acsi.2015.1555

    Article  CAS  Google Scholar 

  72. Alam, M.S., Liu, L., Lee, Y.E., and Lee, D.U., Chem. Pharm. Bull. (Tokyo), 2011, vol. 59, pp. 568–573. https://doi.org/10.1248/cpb.59.568

    Article  CAS  Google Scholar 

  73. Zhao, Z.X., Cheng, L.P., Li, M., Pang, W., and Wu, F.H., Eur. J. Med. Chem., 2019, vol. 173, pp. 305–313. https://doi.org/10.1016/j.ejmech.2019.04.006

    Article  CAS  Google Scholar 

  74. Jin, Y., Tan, Z., He, M., Tian, B., Tang, S., Hewlett, I., and Yang, M., Bioorg. Med. Chem., 2010, vol. 18, pp. 2135–2140. https://doi.org/10.1016/j.bmc.2010.02.003

    Article  CAS  Google Scholar 

  75. Tian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y., and Yang, M., Bioorg. Med. Chem. Lett., 2009, vol. 19, pp. 2162–2167. https://doi.org/10.1016/j.bmcl.2009.02.116

    Article  CAS  Google Scholar 

  76. Che, Z.P., Tian, Y., Liu, S.M., and Chen, G.Q., Brazil. J. Pharm. Sci., 2018, vol. 54, p. e17543. https://doi.org/10.1590/s2175-97902018000417543

    Article  CAS  Google Scholar 

  77. Vicini, P., Incerti, M., La Colla, P., and Loddo, R., Eur. J. Med. Chem., 2009, vol. 44, pp. 1801–1807. https://doi.org/10.1016/j.ejmech.2008.05.030

    Article  CAS  Google Scholar 

  78. Ammal, P.R., Prasad, A.R., and Joseph, A., Heliyon, 2020, vol. 6, p. e05144. https://doi.org/10.1016/j.heliyon.2020.e05144

    Article  CAS  Google Scholar 

  79. McNulty, J., Babu Dokuburra, C., D’Aiuto, L., Demers, M., McClain, L., Piazza, P., Williamson, K., Zheng, W., and Nimgaonkar, V.L., Bioorg. Med. Chem. Lett., 2020, vol. 30, p. 127559. https://doi.org/10.1016/j.bmcl.2020.127559

    Article  CAS  Google Scholar 

  80. Karasyova, G.A., Meditsinskie Novosti, 2012, no. 8, vol. 697–702.

  81. da Silva, Y.K., Augusto, C.V., de Castro, Barbosa, M.L., de Albuquerque, MeloG.M., de Queiroz, A.C., de Lima, Matos., Freire, DiasT., Junior, W.B., Barreiro, E.J., Lima, L.M., and Alexandre-Moreira, M.S., Bioorg. Med. Chem., 2010, vol. 18, pp. 5007–5015. https://doi.org/10.1016/j.bmc.2010.06.002

    Article  CAS  Google Scholar 

  82. Hernández, P., Cabrera, M., Lavaggi, M.L., Celano, L., and Tiscornia, I., Rodrigues da Costa, T., Thomson, L., Bollati-Fogolín, M., Miranda, A.L., Lima, L.M., Barreiro, E.J., González, M., and Cerecetto, H., Bioorg. Med. Chem., 2012, vol. 20, pp. 2158–2171. https://doi.org/10.1016/j.bmc.2012.01.034

    Article  CAS  Google Scholar 

  83. Meira, C.S., Dos Santos Filho, J.M., Sousa, C.C., Anjos, P.S., Cerqueira, J.V., Dias Neto, H.A., da Silveira, R.G., Russo, H.M., Wolfender, J.L., Queiroz, E.F., Moreira, D.R.M., and Soares, M.B.P, Bioorg. Med. Chem., 2018, vol. 26, pp. 1971–1985. https://doi.org/10.1016/j.bmc.2018.02.047

    Article  CAS  Google Scholar 

  84. Nazarov, M.A., Zhikina, L.A., Tolmacheva, I.A., and Grishko, V.V., Bashkirskii Khim. Zhurn., 2017, vol. 24, no. 4, pp. 28–32.

  85. Moraes, A.D.T.O., Miranda, M.D.S., Jacob, Í.T.T., Amorim, C.A.D.C., Moura, R.O., Silva, S. Â.S.D., Soares, M.B.P., Almeida, S.M.V., Souza, T.R.C.L., Oliveira, J.F., Silva, T.G.D., Melo, C.M.L., Moreira, D.R.M., and Lima, M.D.C.A., Bioorg. Med. Chem., 2018, vol. 26, pp. 5388–5396. https://doi.org/10.1016/j.bmc.2018.07.024

    Article  CAS  Google Scholar 

  86. Zhang, B., Zhao, Y.F., Zhai, X., Fan, W.J., Ren, J.L., Wu, C.F., and Gong, P., Chin. Chem. Lett., 2012, vol. 23, pp. 915–918. https://doi.org/10.1016/j.cclet.2012.06.009

    Article  CAS  Google Scholar 

  87. Demurtas, M., Baldisserotto, A., Lampronti, I., Moi, D., Balboni, G., Pacifico, S., Vertuani, S., Manfredini, S., and Onnis, V., Bioorg. Chem., 2019, vol. 85, pp. 568–576. https://doi.org/10.1016/j.bioorg.2019.02.007

    Article  CAS  Google Scholar 

  88. Yu, X., Shi, L., and Ke, S., Bioorg. Med. Chem. Lett., 2015, vol. 25, pp. 5772–5776. https://doi.org/10.1016/j.bmcl.2015.10.069

    Article  CAS  Google Scholar 

  89. Li, Y., Yan, W., Yang, J., Yang, Z., Hu, M., Bai, P., Tang, M., and Chen, L., Eur. J. Med. Chem., 2018, vol. 152, pp. 516–526. https://doi.org/10.1016/j.ejmech.2018.05.003

    Article  CAS  Google Scholar 

  90. Sun, K., Peng, J.D., Suo, F.Z., Zhang, T., Fu, Y.D., Zheng, Y.C., and Liu, H.M., Bioorg. Med. Chem. Lett., 2017, vol. 27, pp. 5036–5039. https://doi.org/10.1016/j.bmcl.2017.10.003

    Article  CAS  Google Scholar 

  91. Soldatenkov, A.T., Kolyadina, N.M., and Shendrik, I.V., Osnovy organicheskoi khimii lekarstvennykh veshchestv (Basic Organic Chemistry of Medicinal Substances), Moscow: Khimiya, 2001.

  92. Mashkovskii, M.D., Lekarstvennye sredstva (Drugs), Moscow: Meditsina, 1978, vol. 2.

  93. Kashaev, A.G., Zimichev, A.V., and Mironov, M.S., Bashkirskii Khim. Zhurn., 2009, vol. 16, no. 3, pp. 65–66.

  94. Cui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R., and Yang, X., Eur. J. Med. Chem., 2010, vol. 45, pp. 5576–5584. https://doi.org/10.1016/j.ejmech.2010.09.007

    Article  CAS  Google Scholar 

  95. Congiu, C. and Onnis, V., Bioorg. Med. Chem., 2013, vol. 21, pp. 6592–6599. https://doi.org/10.1016/j.bmc.2013.08.026

    Article  CAS  Google Scholar 

  96. Aktar, M., Sengupta, D., and Chowdhury, A., Interdiscip. Toxicol., 2009, vol. 2, pp. 1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  Google Scholar 

  97. Tantawy, A.H., Farag, S.M., Hegazy, L., Jiang, H., and Wang, M.Q., Bioorg. Chem., 2020, vol. 94, p. 103464. https://doi.org/10.1016/j.bioorg.2019.103464

    Article  CAS  Google Scholar 

  98. Wu, J., Song, B.A., Hu, D.Y., Yue, M., and Yang, S., Pest. Manag. Sci., 2012, pp. 801–810. https://doi.org/10.1002/ps.2329

  99. Huang, J., Lv, M., Thapa, S., and Xu, H., Bioorg. Med. Chem. Lett., 2018, vol. 28, pp. 1753–1757. https://doi.org/10.1016/j.bmcl.2018.04.029

    Article  CAS  Google Scholar 

  100. Yang, C., Shao, Y., Zhi, X., Huan, Q., Yu, X., Yao, X., and Xu, H., Bioorg. Med. Chem. Lett., 2013, vol. 23, pp. 4806–4812. https://doi.org/10.1016/j.bmcl.2013.06.099

    Article  CAS  Google Scholar 

  101. Qua, H., Yu, X., Zhi, X., Lv, M., and Xu, H., Bioorg. Med. Chem. Lett., 2013, vol. 23, pp. 5552–5557. https://doi.org/10.1016/j.bmcl.2013.08.053

    Article  CAS  Google Scholar 

  102. Wang, Y., Yu, X., Zhi, X., Xiao, X., Yang, C., and Xu, H., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 2621–2624. https://doi.org/10.1016/j.bmcl.2014.04.074

    Article  CAS  Google Scholar 

  103. Aggarwal, N., Kumar, R., Srivastva, C., Dureja, P., and Khurana, J.M., J. Agric. Food Chem., 2010, vol. 58, pp. 3056–3061. https://doi.org/10.1021/jf904144e

    Article  CAS  Google Scholar 

  104. Tabanca, N., Ali, A., Bernier, U.R., Khan, I.A., Kocyigit-Kaymakcioglu, B., Oruç-Emre, E.E., Unsalan, S., and Rollas, S., Pest. Manag. Sci., 2013, vol. 69, pp. 703–708. https://doi.org/10.1002/ps.3424

    Article  CAS  Google Scholar 

  105. Wang, X., Ren, Z., Wang, M., Chen, M., Lu, A., Si, W., and Yang, C., Chem. Centr. J., 2018, vol. 12, p. 83. https://doi.org/10.1186/s13065-018-0452-z

    Article  CAS  Google Scholar 

  106. Chen, Q., Zhang, J.-W., Chen, L.-L., Yang, J., Yang, X.-L., Ling, Y., and Yang, Q., Chin. Chem. Lett., 2017, vol. 28, pp. 1232–1237. https://doi.org/10.1016/j.cclet.2017.03.030

    Article  CAS  Google Scholar 

  107. Rusakova, M.Yu., Galkin, B.N., Filippova, T.O., Vostrova, L.N., and Grenaderova, M.V., Mikrobiologiya i Tekhnologiya, 2009, no. 6, pp. 69–74.

  108. Zhang, Y., Chen, W., Yang, C., Fan, Q., Wu, W., and Jiang, X., J. Control. Release, 2016, vol. 237, pp. 115–124. https://doi.org/10.1016/j.jconrel.2016.07.011

    Article  CAS  Google Scholar 

  109. Sonawane, S.J., Kalhapure, R.S., and Govender, T., Eur. J. Pharm. Sci., 2017, vol. 99, pp. 45–65. https://doi.org/10.1016/j.ejps.2016.12.011

    Article  CAS  Google Scholar 

  110. Thota, S., Rodrigues, D.A., Pinheiro, P.S.M., Lima, L.M., Fraga, C.A.M., and Barreiro, E.J., Bioorg. Med. Chem. Lett., 2018, vol. 28, pp. 2797–2806. https://doi.org/10.1016/j.bmcl.2018.07.015

    Article  CAS  Google Scholar 

  111. Wang, X.L., Zhang, Y.B., Tang, J.F., Yang, Y.S., Chen, R.Q., Zhang, F., and Zhu, H.L., Eur. J. Med. Chem., 2012, vol. 57, pp. 373–382. https://doi.org/10.1016/j.ejmech.2012.09.009

    Article  CAS  Google Scholar 

  112. Xia, L., Xia, Y.F., Huang, L.R., Xiao, X., Lou, H.Y., Liu, T.J., Pan, W.D., and Luo, H., Eur. J. Med. Chem., 2015, vol. 97, pp. 83–93. https://doi.org/10.1016/j.ejmech.2015.04.042

    Article  CAS  Google Scholar 

  113. Jacomini, A.P., Silva, M.J.V., Silva, R.G.M., Gonçalves, D.S., Volpato, H., Basso, E.A., Paula, F.R., Nakamura, C.V., Sarragiotto, M.H., and Rosa, F.A., Eur. J. Med. Chem., 2016, vol. 124, pp. 340–349. https://doi.org/10.1016/j.ejmech.2016.08.048

    Article  CAS  Google Scholar 

  114. dos Santos Filho, J.M., de Queiroz e Silva, D.M.A., Macedo, T.S., Pitangueira Teixeira, H.M., Magalhaes Moreira, D.R., Challal, S., Wolfender, J.L., Ferrira Queiroz, E., and Pereira Soares, M.B., Bioorg. Med. Chem., 2016, vol. 24, pp. 5693–5701. https://doi.org/10.1016/j.bmc.2016.09.013

    Article  CAS  Google Scholar 

  115. Duarte, S.S., de Moura, R.O., and da Silva, P.M., Exp. Parasitol., 2018, vol. 192, pp. 25–35. https://doi.org/10.1016/j.exppara.2018.07.004

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the program of the Russian Academy of Sciences “Fundamentals of Chemistry,” theme no. 8 “Chemo-, regio-, and stereoselective transformations of terpenoids, steroids, and lipids in the targeted synthesis of low-molecular-weight bioregulators” (no. AAAA-A20-120012090023-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Belyaeva.

Ethics declarations

The authors state that there is no conflict of interest.

This article does not contain any studies on the use of animals as objects of research.

Additional information

Translated by A. S. Levina

Abbreviations: ED50, mean effective dose; IC50, half-maximal inhibitory concentration; MIC, minimum inhibitory concentration.

Corresponding author: phone: +7 (937) 860-02-64.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaeva, E.R., Myasoedova, Y.V., Ishmuratova, N.M. et al. Synthesis and Biological Activity of N-Acylhydrazones. Russ J Bioorg Chem 48, 1123–1150 (2022). https://doi.org/10.1134/S1068162022060085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022060085

Keywords:

Navigation