
ISSN 1064-5624, Doklady Mathematics, 2022, Vol. 106, No. 3, pp. 458–461. © The Author(s), 2022. This article is an open access publication.
ISSN 1064-5624, Doklady Mathematics, 2022. © The Author(s), 2022. This article is an open access publication.
Russian Text © The Author(s), 2022, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2022, Vol. 507, pp. 61–65.

MATHEMATICS
Computational Complexity of Theories of a Binary Predicate
with a Small Number of Variables

M. Rybakova,*
Presented by Academician of the RAS A.L. Semenov

Received August 7, 2022; revised September 19, 2022; accepted September 23, 2022

Abstract—We prove -hardness of a number of theories of a binary predicate with three individual variables
(in languages without constants or equality). We also show that, in languages with equality and the operators
of composition and of transitive closure, theories of a binary predicate are -hard with only two individual
variables.
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INTRODUCTION
The paper concerns the so-called classical decision

problem [1], in particular, the algorithmic complexity
of fragments of elementary theories [2, 3]. Below we
deal with theories of a binary predicate, both in lan-
guages with a binary predicate letter only, and those
enriched with some additional tools.

The classical logic of a binary predicate is undecid-
able [4, Chapter 21]. Note that the corresponding
proof [4] uses infinitely many individual variables; at
the same time, to prove that the first-order logic is
undecidable, it suffices to use only three individual
variables and, alongside a binary predicate letter,
infinitely many unary letters [5]. If we only allow one
of the following: only two variables [6, 7], only unary
predicated letters and equality [4, Chapter 21], or only
guarded formulas (where binary letters are allowed
only with certain limitations) [8], then we obtain
decidable fragments. A natural question, thus, arises
concerning decidability of the logic and theories of a
single binary predicate in languages with a finite num-
ber (at least, three) of variables.

A similar situation applies to first-order languages
enriched with operators motivated by applications.
For example, the first-order logic with equality and
the transitive closure operator is -hard in languages
with two variables, but the proof uses several binary
predicate letters and infinitely many unary ones [9];
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again, the question arises concerning the computa-
tional complexity of theories of a binary predicate with
a finite number (in this case, at least two) of variables.

The answer to the question about the decidability
of the logic of a binary predicate in languages with at
least three variables (and without additional operators)
follows from [10]: it is undecidable (see [10, clause (ii)
of Section 4.8]). Similar results for the classical logic
of a binary predicate in languages with two variables,
enriched with additional operators, are unknown to
the author.

We shall describe a construction providing us with
a short proof, firstly, of the undecidability of many
theories of a binary predicate in languages with three
individual variables (in particular, -completeness of
the logic of a binary predicate and -completeness of
the theory of finite models of a binary predicate), and
secondly, -hardness of the validity problem for lan-
guages with a binary predicate letter, equality, and two
individual variables, enriched with the operators of
composition and transitive closure. The construction
will consist of modelling tiling problems [11, 12]; note
that this is a well-known method, with applications
both in algebra [13, 14] and in logic [1, 15–18].

An undecidable tiling problem. Tiles are squares, all
of the same size; type  of a tile is determined by the
colors , , , and  of its edges. The following tiling
problem is -complete [11]: given a set T = {t0, …, tn} of
tile types, we are to determine if there exists a T-tiling, i.e.,
a map  such that 
and , for every .
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Modelling a tiling. Fix a binary predicate letter P
and introduce the following abbreviations: ,

, , , and

If rx, then x is reflexive, and if , then x is irreflexive;
 means that x belongs to an  grid, i.e., x is a

tile-holder;  induces a congruence;  means a single
-step; and  and  are understood as moving,

respectively, rightwards and upwards. To obtain a defi-
nition of , replace, in the definition of , both 
with  and  with ; analogously for , , ,
etc. For a property , let  and

 = .

Define  be the conjunction of the
formulas  xPz), ,

,     
, and . It should be clear that if  is true in

a model , then  contains an  grid whose
rows are determined by H and columns by ; the ele-
ments of the first row are irreflexive, the elements of
the second row are reflexive, the the elements of the
third row are irreflexive, etc.

Let ,  = ,  =

, where . Formula  says that 
sees an -successor outside the grid, and that the said
successor sees a dead end in  -steps. We write 
and  instead of  and . The intended meaning
of  is that x contains a tile of type .

Define  be the conjunction of the following for-
mulas:

Lemma 1.  is satisfiable  there exists a T-tiling.
Observe that, in the arguments given above, we can

make do with positive formulas only: first, replace
 with its negation and the satisfiability problem

with the refutability problem; then, replace every
negation with implication to the formula .
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Theories of a binary predicate. By Lemma 1 and the
observation concerning positive formulas, we obtain
the following refinement of the Church’s theorem [19]:

• the positive fragment of the classical predicate
logic is -complete in the language with a single
binary predicate letter and three individual variables.

Theorem 1 can be extended to theories of a binary
predicate: it suffices to make minor adjustments in the
above-given encoding. For a class  of models of a
binary predicate, let us denote by  the elemen-
tary theory of the class . Let , , , , , , ,
and  be the classes of, respectively, finite, infinite,
reflexive, irreflexive, symmetric, antisymmetric, tran-
sitive, and intransitive models of a binary predicate. If

 and  are classes of models, then we will write 
rather than . So,  is the class of infinite
models that are reflexive, symmetric, and transitive.

Theorem 1. Let  be a class of models of a binary
predicate containing at least one of the following classes:

, , , . Then the positive fragment of
 is -hard in the language with three individual

variables.
As a corollary, the elementary theories of the

classes If, , , , , , and  are not decidable in
languages with three individual variables.

Using a similar argument, we obtain the following
refinement of Trakhtenbrot’s theorem [20, 22]:

• the positive fragment of the theory of finite mod-
els is -complete in languages with a single binary
predicate letter and three individual variables.

To prove this statement, it is enough to notice that
one can encode with a suitable tiling problem the
problem of non-termination of Turing machines on
the empty tape, and then to adjust the formulas given
above so that they say that the first row of a tiling cor-
responds to the initial configuration of a Turing
machine on the empty tape and that the initial tiling
segment does not contain a tile corresponding to a
final state of the machine; note that another possible
way is to use the effective inseparability [21] and The-
orem 1.

A more general statement is also true.
Theorem 2. Let  be a class of finite models of a

binary predicate containing  or . Then the
positive fragment of  is -hard in languages with
three individual variables.

Enriching the language. We shall now show that
logics and theories in enriched languages can be highly
undecidable, even with only two variables. Consider
the tiling problem where the -tiling f is required to
additionally satisfy the condition that the set

 is infinite. This problem is
known to be -complete [12, Theorem 6.4].
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Extend the language of first-order logic with the tran-
sitive closure operator and denote by  the transitive
closure of . For a formula , define  to be the for-
mula obtained from A by uniformly replacing  with .
Let . Define G* be the conjunction of the
formulas , ,

,  
  , , 

y(xVy → ly)), and  to be the conjunction of  and the

formula .

Then,  is satisfiable if, and only if, there exists
a -tiling with the extra condition. This proves -
hardness of a number of theories of a binary predicate
letter with three variables; note that the transitive clo-
sure operator was applied only to atomic formulas.

If, in addition, we have equality and composition
in the language, then, using ideas from [9], we can
describe the same tiling problem with formulas con-
taining only two variables and only one binary predi-
cate letter. The third variable is used in the definitions
of  and , as well as in one of the conjuncts of the
formula . Replace  with equality. Using equality
and the transitive closure operator, one can define the
following properties of a binary relation: functionality,
surjectivity, and disjointness of its domain and its
range, see [9]. This allows us to divide steps alongside

 and  into “even” steps  and  and “odd” steps
, , , and ; also, we can use  instead of  in
; then, there is no need for  any more. The con-

junct of  with three variables can be replaced with
, where xHy =

 and . Again, we
obtain -hardness of theories, but this time with two
variables.

As a result, we obtain the following theorem.
Theorem 3. The validity problem for languages with

two individual language, binary predicate letter, equality
and the operators of composition and transitive closure is

-hard.
Note that the validity problem for such languages in

the class of all finite models is in the class , since it
is possible to effectively enumerate both all formulas
and all finite models (up to isomorphism), which
makes it possible to construct an effective enumera-
tion of the set of refutable formulas.

DISCUSSION

Note that slightly weakened versions of Theorems 1
and 2 can be obtained from [10] in view of the results
presented in [2, 3, 22] and in other papers (see, for
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example, [23; 24, Appendix]). Thus, in [10], the unde-
cidability of the logic of a binary predicate in the lan-
guage with three individual variables is proved, and
using the translations from [2, 3], one can obtain
undecidability (and, in view of [22], -hardness or

-hardness) of various theories of a binary predicate
in languages with a finite (sometimes, perhaps, quite
large) number of individual variables; the idea is to
eliminate some variables in translations when nested
quantifiers appear in formulas, roughly as in the defi-
nition of formulas  above, i.e., to reuse a variable

 in the recursive clause for a formula  whenever 
does not occur freely in , rather than introducing a
new variable.

We also note that a lot of attention has been
devoted (see, for example, [1, 3]) to the study of the
computational properties of elementary fragments
defined by quantifier prefixes from some regular set; if
the said set is infinite, then it contains arbitrarily long
quantifier prefixes; hence, the corresponding frag-
ment of the language contains infinitely many individ-
ual variables. Sets of quantifier prefixes leading to
undecidability of the logic of a binary predicate deter-
mined are infinite. Thus, a natural question arises: is it
possible to extract from the above construction a proof
of the undecidability of some fragment of the logic of
a binary predicate defined by a finite set of quantifier
prefixes? The answer is negative: the formulas 
use nested quantifiers for the variables x and y, and
their quantifier depth depends on ; therefore, con-
verting formulas of the form  to prefix normal form
and increasing the number of elements in T, we get an
increase in the length of the quantifier prefix, which
leads to an increase in the number of variables in the
resultant formula.
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