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Abstract—Knowledge of the loss landscape geometry makes it possible to successfully explain the behavior of
neural networks, the dynamics of their training, and the relationship between resulting solutions and hyper-
parameters, such as the regularization method, neural network architecture, or learning rate schedule. In this
paper, the dynamics of learning and the surface of the standard cross-entropy loss function and the currently
popular mean squared error (MSE) loss function for scale-invariant networks with normalization are studied.
Symmetries are eliminated via the transition to optimization on a sphere. As a result, three learning phases
with fundamentally different properties are revealed depending on the learning step on the sphere, namely,
convergence phase, phase of chaotic equilibrium, and phase of destabilized learning. These phases are
observed for both loss functions, but larger networks and longer learning for the transition to the convergence
phase are required in the case of MSE loss.

Keywords: scale invariance, batch normalization, training of neural networks, optimization, MSE loss func-
tion
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1. INTRODUCTION
A major task that can be successfully addressed

using deep neural networks is multiclass classification.
An important component of problem solving is the
proper choice of the loss function. In most cases, the
cross-entropy loss function is used in classification
problems. Other options are also possible, and there is
evidence that alternative loss functions can lead to bet-
ter performance for a large class of tasks and architec-
tures [1].

On the other hand, the solution of modern prob-
lems in machine learning relies heavily on empirical
techniques for obtaining the best results. For example,
the choice of an optimizer or a learning rate schedule
has long been based on empirical results for particular
architectures [2]. Based on the study of the loss func-
tion landscape, engineering techniques, such as batch
normalization [3] and residual connections [4], were
justified and new methods for improving model gener-
alization [5] were proposed.

It is well known that the optimum width has a
strong correlation with generalization [6]. That is why
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the width at the current point and its dynamics in the
course of training are of primary interest in analyzing
the loss function landscape.

The loss function surface is difficult to study, since
optimization occurs in a multidimensional space and
the function specified by a deep neural network is
nonconvex. Normalization layers in networks makes
the analysis even more complicated because of the
emergence of scale-invariant symmetries. To avoid
these symmetries, we pass to optimization on a sphere.
By varying the resolution on the sphere, we find three
regimes of neural network training corresponding to
different domains of the loss function surface. In this
paper, these phases are analyzed from the point of
view of model generalization and the width of the
resulting solutions. Additionally, various loss func-
tions are compared in terms of the influence exerted
on the found phases and the dynamics of training.

2. EXPERIMENTAL SETUP

2.1. Symmetries in Neural Networks

The study of neural networks is complicated in the
case of a significant level of overparameterization [7]
and in the presence of internal symmetries. The sim-
plest examples of such symmetries are consistent rear-
rangements of neurons in adjacent layers and consis-
tent rescaling of weights in networks with the ReLU
3
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Fig. 1. Phase diagram for the curvature and the cross-entropy loss function for various values of elr for ConvNet. Three different
regimes of the trajectory behavior are observed.

Fig. 2. Basic metrics for various elr. The rightmost diagram demonstrates jumps between the phases for varying .elr
activation function [8]. Such transformations usually
leave the network functionally unchanged, although,
in the weight space, the model can change signifi-
cantly. Another important symmetry is scale invari-
ance in networks with batch normalization. Due to the
use of batch normalization after a convolutional layer,
the multiplication of weights preceding the normaliza-
tion layer does not change the network as a function of
its input. Consider a neural network  with weights

. Parameters the multiplication of which by an
arbitrary positive coefficient α does not change the
functional form of the network will be called scale-
invariant (SI). In this case, for SI parameters, we have

(1)

(2)

The presence of SI parameters in a network leads to
ambiguity in the determination of the optimum width,
since depending on the normalization of the weights,
functionally identical models will have different gradi-
ents and second derivatives according to Eq. (2). To

( )θf

∈θ dR

( ) ( )αθ = θ ∀ θ α >, , ,0f f

( ) ( )∇ αθ = ∇ θ
α
1 .f f
D

get rid of the invariance, we consider networks involv-
ing only scale-invariant parameters on a sphere of
fixed radius. To be definite, we assume by default that
the network is specified on a unit sphere, i.e.,

. The learning rate of a network
with fully scale-invariant (FSI) parameters on a unit
sphere will be called the effective learning rate (elr).
When such a model is trained with gradient methods,
it may happen that, after the current step, the norm of
the weights becomes different from 1. In this case, we
propose normalizing the weights at the current step.
The difference of this approach from Riemannian
optimization on a sphere is discussed in Appendix 3.

It should be noted that fixing the general norm of
parameters eliminates only part of the symmetry in a
neural network, while individual filters of convolu-
tional layers remain invariant under renormalization.

To study the effects associated with the dynamics of
optimization along the loss function surface, we need
an experimental setup in which the training features
are isolated from extraneous effects, such as overfitting
and symmetries in the neural network. For this pur-
pose, we employ the following controllable, yet close

{ }θ ∈ = θ θ =_ 1 { |  1}B
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Fig. 3. Mode connectivity for various models from the first phase: models from the unconverged first phase (top panels) and the
converged first phase (bottom panels). After convergence is achieved, the domains of optima for various  are linearly noncon-
nected.

elr
to actual, training conditions. First, as a training set,
we use the CIFAR10 dataset without augmentation.
Second, as a neural network architecture, we use the
convolutional neural network with batch normaliza-
tion ConvNet with FSI parameters. An FSI architec-
ture is achieved by fixing affine layers of batch normal-
ization and fixing the last linear layer of the network.
A detailed description of the architecture is given in
Appendix 1. It is well known that such constraints on
the parameters do not affect the test performance of
the model. Third, training is based on stochastic gra-
dient descent (SGD) without using momentum or L2
regularization. All models are trained from the same
initialization with the same order of batches during
optimization.

As a loss function, we consider two alternatives. The
standard choice for the optimized error in a C-class
classification task is the cross-entropy
DOKLADY MATHEMATICS  Vol. 106  Suppl. 1  2022
(3)

where  are the correct class label and the net-
work output, respectively.

As an alternative, we consider the mean squared
error (MSE) loss function

(4)

It is not clear from available works which of these
functions is preferable. On the one hand, it has been
long believed that the MSE loss function converges
more slowly and leads to worse test performance with
the use of SGD [9, 10].
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Fig. 4. Phase diagram for decreasing  for ConvNet. The final  is denoted by . The trajectories continue the initial trend,
which suggests that they get stuck in a fixed domain near a local minimum.

elr elr �elr

Fig. 5. Mode connectivity for models with lower . Since the models achieved a zero train error, the corresponding points on
the plots for  are not presented. The models remain linearly connected.

elr
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Fig. 6. Mode connectivity for  for finetuning with a higher learning rate. For small increases (top panels), the points

remain linearly connected. A stronger increase in  leads to the transition to a neighborhood of another optimum (bottom panels).
Models that have achieved a zero train error are not presented in the plots for .

10–1

10–2

10–3

10–4

= 0.0001elr
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TE
However, more recent studies demonstrate an
opposite situation: a detailed analysis in [1] on a broad
class of architectures and problems showed that they
are equivalent in terms of quality with the MSE loss
function having a slightly slower convergence rate.

From a theoretical point of view, there is no defin-
itive answer either. With a high degree of reparametri-
zation typical of neural networks and under suffi-
ciently strong conditions, it has been shown that solu-
tions based on the cross-entropy and MSE loss
functions coincide functionally [11]. However, avail-
able works do not say whether the results can be
extended to modern architectures of deep neural net-
works.

As basic objects of study, we use the mean value 
of the loss function on a training set, the fractions

TL
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 of incorrectly classified objects on training and
test sets, and the curvature metric .

2.2. Curvature Metrics

As a baseline metric of the width, we use the mean
norm of the gradients over individual batches of the
training set GM. Intuitively, this metric shows how
large the scatter of the gradients over individual objects
at a point of the weight space is. This metric must be
small in wide plane domains and large in narrow ones.

In practice, this metric well correlates with second-
order curvature metrics, such as the trace of the Fisher
information matrix or the maximum eigenvalue of the
Hessian matrix. A theoretical analysis also confirms
high correlations between these metrics [12]. Note
that the computation of GM requires only one back-

,T tE E
( )= ∇ θb bGM E L
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Fig. 7. Phase diagrams for  for fine-tuning with a higher learning rate. Under a small increases in , the model stays
within the initial optimum.

= 0.0001elr elr
ward pass, in contrast to two backward passes in the
computation of estimates on statistics of the Hessian
and the Fisher information matrix. Moreover, since
the averaging is performed over batches, rather than
over individual objects, the curvature estimate can be
computed much faster without degrading the quality
of the approximations. A comparison of these metrics
is made in Appendix 2.

3. TRAINING WITH CROSS-ENTROPY
LOSS FUNCTION

To analyze the dynamics of neural network train-
ing, FSI models were trained with the cross-entropy
loss function for various values of elr.

Figure 1 shows that the models can be formally
divided into three groups. In the first group, the mod-
els converge to a domain with wide minima and a low
loss function value. In the second group, the loss and
curvature models oscillate about some value, as can be
seen in the upper panels in Fig. 2. The third group
contains models with the largest curvature.

Below, each group is analyzed separately.
D

3.1. First Phase

Models for which  are assigned to the
first phase. In these models, with an increase in elr, all
metrics decrease consistently at the end of training.
The upper boundary of the phase is determined by a
sharp change in all metrics (lower panels in Fig. 2),
which suggests that the behavior changes qualitatively
in crossing this boundary. Moreover, the first phase
can be formally divided into two subphases, namely,
models achieving a zero error on the training set at the
end of training (converged first phase) and the other
models with smaller values of elr (unconverged first
phase).

To analyze the first phase, we investigate the linear
connectivity of models (mode connectivity). For this
purpose, we consider two models of f(θ) parameter-
ized by weights . By the mode connectivity, we
mean the values of the metrics for the models on the
interval between two starting points f(αθ1 + ,
α ∈ [0, 1]. The models are called linearly connected or
lying in the same domain if the graph of the mode con-
nectivity does not contain sharp extrema at intermedi-

−≤ × 47 10elr

1 2θ ,θ

− 2(1 α)θ )
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Fig. 8. Phase diagrams for  for finetuning with a higher learning rate. A jump from one trajectory to another in the
transition to another, f latter optimum can be seen in both diagrams.

= 0.0001elr
ate points . Otherwise, the models are called
linearly nonconnected.

Models that do not achieve a zero error due to the
low learning rate converge to a single linearly con-
nected domain. At high learning rates, models manage
to diverge to different optima, which leads to a peak in
the loss function value (see the plot of the mode con-
nectivity in Fig. 3). It should be noted that the exact
boundary between the subphases corresponds not to a
zero train error, but rather to an error of order of 10–
15 objects.

Thus, for , the models converge to a
single domain, but at different rates, which is also con-
firmed by their coinciding trajectories in the phase
diagram in Fig. 1.

After a rather low train error is achieved, the mod-
els begin to converge along different trajectories. An
increase in the learning rate leads to generalization
growing monotonically. This agrees well with the fact
that, for large values of elr, the resolution of the net-
work decreases, thus leading to convergence to pro-
gressively wider plane domains, which, in turn, deter-
mine a better quality on the test set. With a further

( )∈α 0,1

−≤ × 78 10elr
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increase in elr, the network sharply ceases to converge
to a zero train error and its behavior changes qualita-
tively. Thus, this experiment confirms that the best
generalization is achieved in the widest optimum,
assuming that the network converges.

Additionally, the absence of mode connectivity in
the first phase for sufficiently large elr shows that the
models converge in different domains of the weight
space. Let us show that, in each of these domains,
there are no minima of smaller width. For this pur-
pose, the models are additionally trained for 5000 iter-
ations with a sharp decrease in the learning rate by a
factor of 2 and 10.

The diagram in Fig. 4 shows that a decrease in elr
does not change the dynamics of model-training. This
indirectly confirms that the global properties of the
optimum remain stable and, inside the optimum of
given width, there is no minimum of smaller width.

The mode connectivity presented in Fig. 5 also
confirms that a decrease in elr does not lead to conver-
gence to linearly nonconnected optima.

Now, we examine the behavior of networks with
increasing elr. Depending on the final elr, several basic
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Fig. 9. Phase diagrams for  for finetuning with a higher learning rate. An instantaneous transition to a chaotic regime
is observed in this case.

= 0.0001elr

Fig. 10. Distribution of cosine distances between all neighboring epochs for various learning rates shows the separation into train-
ing phases.
situations are possible. For small growth factors, the
dynamics of the network changes weakly. Figures 6
and 7 show that the model stays in the same optimum
in terms of generalization and the curvature metric.

As the final elr increases further, the network is
trained less steadily and, at some time, there is a
D

“jump” and transition to a new trajectory. The values
of  show that the model can converge to minima
slightly different in quality. The results demonstrate
that, in the presence of jumps during additional train-
ing, the training prehistory has a weak effect, i.e., leav-
ing the instability region, the model returns to the tra-

tE
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Fig. 11. Phase diagrams for  for finetuning from the second phase with a lower learning rate. The models converge to
the widest optimum.

−= 310elr
jectory corresponds to the initial training with the
final .

Finally, if the final elr exceeds the upper boundary
of the first phase, then the model quickly diverges and
passes into a domain corresponding to training from
scratch with a learning rate in the second phase.

3.2. Second Phase

When the learning rate increases to , the
transition in the next regime occurs: all the metrics
quickly (during the first 5–10 iterations) reach a fixed
average level and then do not vary in the course of
training. The transition to the new phase is accompa-
nied by a sharp jump in all the metrics. Moreover, in
the second phase, the model converges to a consider-
ably better quality on the training set, rather than to
random predictions. With a further increase in elr, the
convergence of the model progressively degrades until
it passes to the third phase. Interestingly, in this phase,
an increase in elr leads to a reduced curvature.

It can be supposed that the difference between the
first and second phases is caused by the presence of a

�elr

−× 48 10
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high-curvature domain in the weight space, which has
to be overcome to achieve a low-value loss function. In
the phase diagram, we can see a typical turn on the tra-
jectories of the models from the first phase in the
domain , where a local peak of cur-
vature is observed.

In the second phase, the weights of the network do
not converge and the weight vectors at neighboring
iterations are less correlated than in the first phase;
moreover, the correlation reduces with increasing elr,
which can be seen in Fig. 10.

As elr increases further, the weights at neighboring
iterations cease to correlate with each other, which
corresponds to the onset of the third phase.

Let us examine the properties of the models in the
second phase. The mean values of the metrics do not
vary significantly over all 1000 iterations. Due to the
high learning rate, the models get stuck at a fixed level
and the values of the metrics can reduce only after
passing through the curvature “bottleneck.” However,
since the gradients are extremely high in this zone, this
passage is possible only if the SGD step is decreased.
Accordingly, we consider an experiment in which a

−∼ ×1 010 –2 10TL
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Fig. 12. Phase diagrams for  for finetuning from the second phase with a lower learning rate. The models converge to
optima of different widths.

−= 210elr

Fig. 13. Linear  schedules with various transition lengths.elr
model from the second phase is additionally trained
with a sharply reduced value of elr.

Figure 11 shows that the models when launched
with a small elr from the second phase have a phase
diagram similar to the one in Fig. 4: the trajectory
continues the trend of points from the second phase,
converging near the line corresponding to the highest
learning rate in the first phase ( ), regard-
less of the final elr. Moreover, the generalization of
such models exceeds the best generalization among all
networks obtained in the first phase. The absence of
the correlation between GM and  in this example
once again emphasizes the shortcoming of local cur-
vature metrics when they are used as proxy for gener-
alization.

Fine-tuning with the higher  leads to
opposite results. First, according to the top panel in
Fig. 12, the trajectories of such models converge to the
same curves as those corresponding to models trained
with the initially given elr. The bottom panel shows
that the resulting quality improves only at low final
learning rates ( ).

−= × 47 10elr

tE

−= 210elr

−≤ 410elr
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Fig. 14. Phase diagrams for  for finetuning up to  with various schedules;  is the transition length.−= 210elr �
−= 510elr Δ

Fig. 15. Basic metrics in the third phase: random walk (blue) and gradient descent (orange). Learning in the third phase is similar
to random walk.
A comparison of the results for large and small val-
ues of  in the second phase shows that pre-training
in the second phase has a larger effect on the resulting
quality  when the starting elr is lower.

Additionally, relying on the independence of the
resulting quality and the trajectory for finetuning with
small elr in the second phase, we can hypothesize that
the optimum in the first phase is chosen in the transi-
tion from the second to the first phase in the early
stage of training. To check this hypothesis, the follow-
ing experiment is considered: for the fixed starting
value , we launch finetuning with the piece-
wise linear learning rate schedule presented in Fig. 13.

elr

tE

−= 210elr
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Figure 14 shows that, by varying the reduction rate
of elr, it is possible to obtain a variety of trajectories
with one end exhibiting convergence along the line
associated with the highest elr of the first phase and
with the other end (at the fastest variation in elr) cor-
responding to the trajectory of the model for  with-
out pre-training. A slow decrease in elr in the second
phase leads to the model gradually passing to trajecto-
ries corresponding to smaller elr in the second phase
until the model jumps to a domain of smaller curva-
ture.

The growth of  also smoothly depends on the rate
of decrease in elr. Thus, we can assume that the opti-

�elr

tE
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Fig. 16. Phase diagram for the curvature and the MSE loss function for various .elr

Fig. 17. Distribution of cosine distances between all neighboring epochs for various learning rates in the case of the MSE loss
function.

cos

Fig. 18. Basic metrics for various  for ConvNet with the MSE loss function. The plot of the test error indicates two phases of
learning.

elr
mal schedule strategy for elr is to stay at points of the
second phase as long as possible before passing to the
first phase, since, at the time of the transition, the
model “fixes” the minimum to which it will converge.
D

The minimum in the first phase can be changed only
by significantly increasing elr and achieving instability
in training, which makes it possible to “leap” into a
domain with other functional characteristics.
OKLADY MATHEMATICS  Vol. 106  Suppl. 1  2022
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Fig. 19. Phase diagram for the curvature and the MSE loss function for various . ConvNet on a subset from CIFAR10.elr

Fig. 20. Basic metrics for various  ConvNet with the MSE loss function on a subsample from CIFAR10.elr
3.3. Third Phase

Consider the remaining models corresponding to
. A further increase in elr in the second

phase once again leads to a qualitative change in the
behavior. Specifically, the model gradients grow
sharply and the train error becomes equivalent to ran-
dom guess (90% in the case of 10 classes). The transi-
tion to this regime corresponds to a switch to random
prediction. To check this statement, the model was
trained so that every gradient descent step replaced by
a step of the same magnitude in a random direction.
For comparison purposes, we conducted an experi-
ment with the gradient substituted for the anti-gradi-
ent at the current step. The results show that random
walking and gradient motion make it possible to
bound the observed behavior of the curvature in the
third phase from below and above.

4. TRAINING WITH THE MSE LOSS 
FUNCTION

Now we compare the phase diagrams for the MSE
loss function. It is well known that the solution of a

−≥ × 2 2 10elr
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regression task is more complicated than the solution
of a classification task [11], so training with MSE loss
function requires a larger number of iterations to
achieve convergence. For this reason, in the experi-
ments with MSE loss, all models were trained over
6000 iterations.

An analysis of the phase diagram in Fig. 16 clearly
reveals the third phase (elr = 0.5) and the unconverged
part of the first phase ( ). The other mod-
els visually resemble both the first and the second
phase for cross entropy. For a more accurate analysis,
we consider the distribution of cosine distances for
successive models along the learning trajectory. Figure 17
shows that the models with  can be assigned
to the second phase, while the others, to the first
phase.

Now, we examine how this separation into phases
correlates with the behavior of the metrics in Fig. 18. It
can be seen that none of the models converges to a zero
error on the training set, which once again confirms
that the models with MSE loss converge more slowly
than the ones with the cross-entropy loss function.
Another difference is that the boundary between the

0.0001elr &

0.02elr *
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Fig. 21. Phase diagrams for finetuning with smaller values of  for MSE.elr

Fig. 22. Phase diagram for the trace of the Fisher matrix and the cross-entropy loss function.
first and second phases is fuzzier. Indeed, the models
with elr ~ 0.008–0.02 monotonically reduce the num-
ber of incorrectly classified objects, while remaining in
a domain of fixed width. This is in contrast to the first
phase of cross-entropy, where the loss and the curva-
ture decrease consistently along the entire trajectory.
D

Since the models with MSE loss do not achieve
convergence on the whole set of 50000 objects, we
train the networks on a subset of 10% in size.

In this case, the metrics in Fig. 20 and the phase
diagram in Fig. 19 become similar to the case of cross-
OKLADY MATHEMATICS  Vol. 106  Suppl. 1  2022
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Fig. 23. Phase diagram for the maximum eigenvalue of the Hessian and the cross-entropy loss function.
entropy. All three training phases and two subphases of
the first phase can be clearly seen in the phase dia-
gram. The optimal value of elr in terms of the error on
the test set corresponds to the highest learning rate in
the first phase. The minimum curvature is attained at
the same point.

By analogy with the cross-entropy loss function,
we consider an experiment involving additional train-
ing with various elr.

An analysis of the results shows that a decrease in
elr from trajectories corresponding to the first phase
leads to behavior that is, on the one hand, consistent
with the cross-entropy: the trajectories have the same
trend as before a decrease in the learning rate. More-
over, the loss function decreases. However, in contrast
to the cross-entropy, where the curvature decreases
monotonically, for the MSE loss, GM either stabilizes
( , the boundary between the first and second−≈ 210elr
DOKLADY MATHEMATICS  Vol. 106  Suppl. 1  2022

Fig. 24. Optimization on the sphere.
phases) or even begins to increase (for lower elr). This
behavior suggests the beginning of overfitting, which is
more clearly seen in the bottom panel in Fig. 21:

first decreases, but then begins to grow sharply.

5. CONCLUSIONS
The conducted study has shown the existence of

several phases of training fully scale-invariant net-
works on a sphere depending on the learning rate.

The first phase of training corresponds to weights
converging to an optimum of fixed width.

The second phase is determined by chaotic equilib-
rium in which the metrics for the network stabilize
near some level. The domain in which the neural net-
work stabilizes in the second phase has a decisive
impact on the resulting quality of the model.

The third phase is characterized by the transition to
random walk on a sphere. There is no correlation
between different models at neighboring iterations.

The revealed phases are manifested for various loss
functions, namely, for both MSE loss and cross-
entropy. The study performed in Appendix 4 shows
that these conclusions also hold for networks with
non-scale-invariant parameters and regularization.

Additionally, the results confirm the hypothesis
that MSE requires a larger number of iterations or a
larger number of network parameters than cross-
entropy to achieve convergence of similar quality.

APPENDIX
1. NETWORK ARCHITECTURE

As a baseline FSI model, we use a convolutional net-
work consisting of four layers as described in Table 1.

Following the example in [13], the last linear layer
in a random initialization is fixed so that its weight
norm is equal to 10 in the case of cross-entropy loss

tE
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Table 1. Baseline architecture of the ConvNet network

No. Layer

1 Conv2d(3, 32, kernel_size=(3, 3), padding=(1, 1), bias=False)
2 BatchNorm2d(32, momentum=0.1, affine=False)
3 ReLU()
4 Conv2d(32, 64, kernel_size=(3, 3), padding=(1, 1), bias=False)
5 BatchNorm2d(64, momentum=0.1, affine=False)
6 ReLU()
7 MaxPool2d(kernel_size=2, stride=2)
8 Conv2d(64, 128, kernel_size=(3, 3), padding=(1, 1), bias=False)
9 BatchNorm2d(128, momentum=0.1, affine=False)

10 ReLU()
11 MaxPool2d(kernel_size=2, stride=2)
12 Conv2d(128, 256, kernel_size=(3, 3), padding=(1, 1), bias=False)
13 BatchNorm2d(256, momentum=0.1, affine=False)
14 ReLU()
15 MaxPool2d(kernel_size=2, stride=2)
16 MaxPool2d(kernel_size=4, stride=4)
17 Linear(in_features=256, out_features=10, bias=True)
and 1.5 in the case of MSE loss. This norm is close to
the values taken by the norm of the last layer in train-
ing all network parameters. Norm initialization is nec-
essary for achieving a low train error.

2. COMPARISON 
OF CURVATURE METRICS

To validate the chosen curvature metric GM =
 for the ConvNet model, we compared

phase diagrams obtained other local methods for cur-
vature estimation, namely, the trace of the Fisher

( )∇ θb bE L
D

Fig. 25. Optimization e
information matrix trF and the maximum eigenvalue
of the Hessian .

Comparing Figs. 22 and 23 with the initial diagram
in Fig. 1, we can see a clear similarity: first, all three
phases of training are observed in all curvature met-
rics. Second, even more pronounced is the bottleneck
effect, i.e., the high-curvature domains to be passed by
the models from the first phase before going down to
the domain of low loss function values.

max λii
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Fig. 26. Phase diagrams for VGG16BN, .= 0wd

Fig. 27. Basic metrics for various elr for VGG16BN, .= 0.0wd
3. OPTIMIZATION ON A SPHERE

According to the experimental setup, the model is
specified on a sphere of radius 1. Accordingly, a valid
optimization method for this model is based on Rie-
mannian optimization. However, the implementation
of such algorithms in practice is redundant. Indeed,
assume that the network f(θ) defined by Eq. (1) is
trained with gradient descent in the space of weights

 with some learning rate . Since the weightθ ∈ dR lr
DOKLADY MATHEMATICS  Vol. 106  Suppl. 1  2022
norm changes after performing the optimization step
, we project the weights back onto

the sphere: . Thus, the transition from  to 

corresponds to the motion over the sphere along a
great circle arc at a distance of . The true value of

the learning rate on the sphere is . The

error between  and  is defined as

( )θ = θ − × ∇ θ' lr f
θθ =
θ

'*
'

θ θ*

Δl

( )
=

∇ θ
Δlelr
f

lr elr
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Fig. 28. Phase diagrams for VGG16BN, .= 0.0001wd

Fig. 29. Basic metrics for various elr for VGG16BN, .= 0.0001wd
Note that r depends on the effective step size
, which may potentially lead to a high error

in the case of large gradient norms.

( )
( )[ ]

( )
∇ θ

= = =
∇ θ ∇ θ

arctanΔ .
lr felr lr

lr lr f lr f

( )∇ θlr f
D

We examine how the relative error  varies in
the course of training with the cross-entropy loss
function.

Figure 25 shows that, for all models in the first and
second phases, SGD-based optimization with weight
renormalization corresponds to actual Riemannian
optimization on the sphere with elr differing by at most

−1   r
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2% from the learning rate  in the original Euclidean
space. In the third phase, due to the growth of the gra-
dient, this procedure leads to a significantly overesti-
mated elr. Intuitively, in the third phase, every SGD
step leads to the weight vector rotated by an angle

. It should be noted that the procedure with
weight normalization fails to examine the behavior of
the networks for extremely large values of , which
lead to the weight vector rotated by an angle larger
than 90°.

4. RESULTS FOR VGG16BN
Consider a more practical experimental setup. As a

neural network, we use VGG16 [14] with batch nor-
malization. The linear layers and the affine parame-
ters of batch normalization are not fixed. Additionally,
the weights are not projected onto a sphere in training.
Instead, the parameters are optimized in the initial
space by applying SGD without momentum. Since
the network is trained without constraints, the con-
cept of elr loses meaning in this setting. However, for
consistency, by elr in this section we mean the com-
mon learning rate (lr).

First, we consider training without  regulariza-
tion. In this case, the norm of the network weights
increases in the optimization process, which leads to
unstable training for large elr. In practice, training
with large elr results in instantaneous destabilization
and divergence of the weights in NaN. The phase dia-
grams in Fig. 26 for lower learning rates demonstrate
behavior similar to the first phase, including its two
subphases. By the end of training, the dynamics becomes
much more noisy as compared with ConvNet, but the
linear trend of the lines in the phase diagram still per-
sists.

The metrics in Fig. 27 demonstrate a decreasing
trend with an increase in elr, but, because of the large
variance, the metrics for the training set are unstable.
Nevertheless, it can be clearly seen that optimal gener-
alization is achieved for the highest elr in the first
phase in the same place where the curvature attains its
minimum.

When  regularization is added to the model, even
for small values of weight decay ( ), the net-
work becomes much more stable and the range of
admissible elr expands.

Now, in the top panel in Fig. 28, we can see first
phase and several models from the second phase,
which do not pass into the domain of low gradients.
Moreover, for models with large elr in the first phase,
the loss function values exhibit a turn at the end of
training. Most likely, this effect is associated with reg-
ularization, since, for small loss values, the weight
decay begins to dominate in the optimization process.
It can be seen that such regularization has a positive
effect on the generalization: the model converges to a

wider optimum with better test quality . An analysis
of the metrics depicted in the lower panels in Fig. 29
confirms the hypothesis that the best generalization is
achieved for the maximum value of elr in the first
phase. By analogy with the results for ConvNet, all the
metrics in the first phase monotonically decrease with
growing . Moreover, the metrics for models in the
second phase reach a constant level not from the start
of training, but, like in the case of MSE, first demon-
strate a decrease.
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