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On Convergence of Finite-Difference Shock-Capturing Schemes
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Abstract⎯We perform a comparative accuracy study of the Rusanov, CABARETM, and WENO5 difference
schemes used to compute the dam break problem for shallow water theory equations. We demonstrate that all
three schemes have the first order of convergence inside the region occupied by a centered rarefaction wave,
and the Rusanov scheme has the second order of convergence in the area of constant f low between the shock
and the rarefaction wave, while in the CABARETM and WENO5 schemes there is no local convergence in
this area. This is due to the fact that the numerical solutions obtained by the CABARETM and WENO5
schemes have undamped oscillations in the region of influence of the shock, the amplitude of which does not
decrease with decreasing of the difference grid steps. As a result, taking into account the Lax-Wendroff the-
orem, the numerical solutions obtained by the conservative schemes CABARETM and WENO5 converge
only weakly to the exact constant solution in the region of influence of the shock wave, in contrast to the
Rusanov scheme, which locally converges with the second order to the exact solution in this region.
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1. In [1], which is well known in the context of Rie-
mann solvers, Godunov introduced the concept of a
monotone finite-difference scheme and showed that
there are no monotone high-order accurate schemes
among the linear two-layer-in-time ones. Further
development of the theory of finite-difference shock-
capturing schemes for hyperbolic systems of conserva-
tion laws was aimed, to a large degree, at overcoming
this Godunov order barrier. As a result, various classes
of difference schemes were developed in which a high
order of accuracy for smooth solutions and monoto-
nicity (in the case of a linear system and a scalar con-
servation law) are reached via nonlinear f lux correc-
tion, which leads to the nonlinearity of these schemes
even in the case of the linear transport equation. The
basic classes of these schemes, which we called NFC
(Nonlinear Flux Correction) schemes, include
MUSCL [2], WENO [3], DG [4], and CABARET [5]
schemes. The main advantage of these schemes is that
they localize shock waves with high accuracy and do
not generate considerable spurious oscillations.

It was shown that NFC schemes have at most the first
order of both local convergence in regions of influence of
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shock waves [6, 7] and integral convergence on intervals
with one of the boundaries lying in a region of shock wave
influence [8–10]. At the same time, some high-order
accurate nonmonotone schemes having analytic func-
tions of numerical fluxes and, hence, approximating the
Rankine–Hugoniot ε-conditions with higher accuracy
preserve the high order of convergence in negative norm
in integration over domains containing strong disconti-
nuities [8]. As a result, these nonmonotone schemes, in
contrast to NFC ones, preserve the high order of conver-
gence in regions of shock influence despite the noticeable
spurious oscillations on their fronts.

In this context, a method was proposed in [11] for
constructing combined finite-difference shock-cap-
turing schemes that combine the advantages of NFC
and classical nonmonotone schemes. Namely, they
localize shock fronts with high accuracy, while pre-
serving the high order of convergence in regions of
their influence. A combined finite-difference scheme
makes use of a nonmonotone basic scheme having a
higher order of convergence in regions of influence of
shock waves. The basic scheme is used to construct a
difference solution in the entire computational
domain. In high-gradient regions, where this solution
exhibits spurious oscillations, it is corrected by numer-
ically solving internal initial-boundary value problems
with the use of an NFC scheme. In [11] the Rusanov
scheme [12] of third order of classical approximation
was used as a basic and a monotone modification of
CABARET [5] of second-order accuracy for smooth
solutions was used as an internal NFC scheme. This
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Fig. 1. (a) Fluid depth and (b) local orders of convergence at the time T = 1 produced by the Rusanov (crosses), CABARETM
(solid circles), and WENO5 (open circles) schemes. In panel (a), the solid curve depicts the exact solution, and the dashed line
shows the initial value of the f luid depth.
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modification of the CABARET scheme was studied in
[10] and, in what follows, we refer to it as CABARETM.

A potential shortcoming of a combined scheme is
that the oscillations arising at the shock front in the
nonmonotone basic scheme can propagate over time
into smooth parts of the computed exact solution (pri-
marily, into the region of shock wave influence), so
the computational domain for the internal NFC
scheme gradually expands and the efficiency of the
combined scheme degrades. However, an opposite sit-
uation actually takes place. It was revealed in [13] in
the numerical solution of the classical Shu–Osher
problem [14] by applying a DG-based NFC scheme
[4] that the numerical solution does not converge
locally to the exact solution behind the front of a shock
wave propagating against the entropy perturbation
background. This result is explained by arising numer-
ical oscillations whose amplitude ceases to reduce with
decreasing spatial step, starting with a sufficiently
small value of the latter.

In this paper, we show that a similar difficulty
arises in computing shock waves by applying other
NFC schemes. Specifically, in the dam break problem
for the shallow water equations, the numerical solu-
tion produced by the nonmonotone Rusanov scheme
[12], despite the noticeable oscillations at the shock
wave, converges monotonically to the exact solution
with the second order in the region of shock influence.
At the same time, the numerical solutions of this prob-
lem produced by the NFC schemes CABARETM [10]
and WENO5 [3] exhibit undamped oscillations in the
constant-flow domain between the shock wave and
the centered rarefaction wave. As a result, these solu-
tions do not converge locally in the region of shock
wave influence.

2. In the case of a rectangular horizontal channel
without bottom friction, the system of conservation
laws of shallow water theory in the first approximation
can be written in vector form as

(1)
here,

(2)

where H(x, t) is the f luid depth,  is the f low rate
of the f luid, and g = 9.81 is the acceleration of gravity.
For system (1), (2), we consider the dam break prob-
lem, i.e., the Riemann problem with the following
piecewise constant initial data:

(3)

The solution of this problem consists of a shock
wave propagating at the constant speed D = 6.64 and a
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Fig. 2. Fluid depth in the constant-flow domain as produced by (a) CABARETM and (b) WENO5 schemes on grids with spatial
steps  (squares),  (open circles), and  (solid circles). The exact solution is shown by the horizontal line.
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centered depression wave with a constant f low region
in between. A numerical solution of problem (1)–(3)
is constructed on a uniform rectangular grid ,

 with the time step  determined by the
Courant stability condition

(4)

where  are the velocities of the charac-
teristics in system (1), (2);  is the exact solution of
problem (1)–(3); and z = 0.45 is the safety factor.

Figures 1 and 2 show the numerical results for
problem (1)–(3) produced by the Rusanov [12], CAB-
ARETM [10], and WENO5 [3] schemes at the time
T = 1. In Fig. 1a, the exact solution for the f luid depth
is compared with the numerical solution obtained on a
grid with the spatial step h = 0.36. It can be seen that
the Rusanov nonmonotone scheme exhibits spurious
oscillations at the shock front, whereas the NFC
schemes CABARETM and WENO5 do not. More-
over, the shock wave and the weak discontinuities at
the boundaries of the centered depression wave in
CABARETM are smeared significantly less than in
the Rusanov and WENO5 schemes.

Figure 1b presents the orders of local convergence
of the difference solutions computed using the Runge
formula
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and corrected with the help of the limiter function

(6)

where , , N is a positive integer,
and  and  are the numerical solutions obtained
on grids with spatial steps h and h/3, respectively. The
orders of convergence ρj were computed on the basis
grid with  and are shown in Fig. 1b for every
40th spatial grid node . Figure 1b shows that all
three schemes have the first order of convergence
within the centered depression wave. In the constant-
flow domain between the shock and the depression
wave, the Rusanov scheme has the second order of
convergence, while the values of  based on formu-
las (5), (6) for CABARETM and WENO5 strongly
oscillate, so the order of local convergence of these
schemes in the region of shock influence is uncertain.

To explain these results, we performed a series of test
computations on a sequence of refined grids. It was
found that the difference solution produced by the
Rusanov scheme is monotone (with respect to both
fluid depth and the f low rate) in the region of shock
influence outside some neighborhoods of the shock
front and the weak discontinuity at the right boundary
of the depression wave, where the difference solution
converges with the second order to the exact constant
one. At the same time, the difference solutions based
on the NFC schemes CABARETM and WENO5
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exhibit undamped oscillations in the region of shock
influence, and the oscillation structure depends on
the value of the parameter z involved in stability con-
dition (4). Figure 2a shows that, for z = 0.45 on the
interval [3.2, 4.2], which lies within the region of shock
influence, CABARETM exhibits numerical oscillations
with roughly identical amplitudes for the spatial steps

  and , where , while
the wave length is reduced roughly by a factor of three in
the transition from hi to , i.e., it is proportional to

. Figure 2b demonstrates a similar result for the
numerical solutions produced by WENO5 on the interval
[3.6, 4.6]. An analogous behavior of oscillations in the
region of shock influence was obtained in [13] in the case
of the DG method [4] applied to the Shu–Osher prob-
lem [14]. Figure 2 also shows that the amplitude of the
oscillations obtained using CABARETM is about ten-
fold larger than in the case of WENO5, while the
length of the oscillation waves is nearly identical for
both schemes for a fixed spatial step hi.

Thus, the following general tendency is observed:
the difference solutions produced by the NFC
schemes may not exhibit local convergence to the
exact solution in the regions of shock wave influence.
In this case, in view of the Lax–Wendroff theorem
[15], the limiting discontinuous solutions of the con-
servative NFC schemes are only weak solutions of the
approximated system of conservation laws in the
regions of shock wave influence.
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