Skip to main content
Log in

Theory of Hidden Oscillations and Stability of Control Systems

  • STABILITY
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

The development of the theory of absolute stability, the theory of bifurcations, the theory of chaos, theory of robust control, and new computing technologies has made it possible to take a fresh look at a number of well-known theoretical and practical problems in the analysis of multidimensional control systems, which led to the emergence of the theory of hidden oscillations, which represents the genesis of the modern era of Andronov’s theory of oscillations. The theory of hidden oscillations is based on a new classification of oscillations as self-excited or hidden. While the self-excitation of oscillations can be effectively investigated analytically and numerically, revealing a hidden oscillation requires the development of special analytical and numerical methods and also it is necessary to determine the exact boundaries of global stability, to analyze and reduce the gap between the necessary and sufficient conditions for global stability, and distinguish classes of control systems for which these conditions coincide. This survey discusses well-known theoretical and engineering problems in which hidden oscillations (their absence or presence and location) play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. A.A. Witt was a coauthor of the first edition of the book [8], published in 1937, but his name was removed from the first edition and restored only in the second edition of the book, published in 1959. In 1941, a monograph by I. Rockard, one of the creators of the atomic bomb in France, was published with a similar name and similar ideas in French [9] without reference to the works of Andronov.

  2. The concept of self-excitation of oscillations in Andronov’s works was also used to describe the bifurcation process of the transition of the system’s state to the oscillation mode with changing parameters [8].

  3. An attractor of a dynamical system is a bounded closed invariant set in phase space that is locally attractive (i.e., having an open neighborhood—a basin of attraction, all trajectories with the initial data from which tend to the attractor over time).

  4. Several paragraphs in the monograph [7] are devoted to the corresponding analytical analysis.

  5. G. Barkhausen used the similar German term Selbsterregte Schwingungen in his papers [44].

  6. https://scholar.google.com/scholar?q=hidden+attractor

  7. This doctoral thesis was defended at St. Petersburg State University in 2016 (reviewers: I.M. Burkin, N.G. Kuznetsov, G.A. Leonov, E.A. Mikrin, V.G. Peshekhonov, R.M. Yusupov, V.I. Nekorkin, and A.M. Sergeev (Leading Organization–Institute of Applied Physics of the Russian Academy of Sciences)).

  8. RAS, news 11.12.2016 (Russian Highly Cited Researchers Award, 2016): http://www.ras.ru/news/shownews.aspx?id=036a64c2-32f2-4624-bc32-8f0e4d138e7d. See the citation of the review on latent oscillations in the translated version of Izvestia RAN. Control theory and systems: http://citations.springer.com/search?query=Computer+and+Systems+Sciences+International.

  9. The corresponding rigorous mathematical statements were first formulated later for the general case of continuous systems by E.A. Barbashin and N.N. Krasovsky [49].

  10. Note that we can construct counterexamples to the discrete analogue of the Kalman conjecture for 2-dimensional systems [53]. Here, the difference in the phase space dimension needed for constructing counterexamples for continuous and discrete cases coincides with the difference in the dimension of the spaces of dynamical systems in which chaos occurs: 3 and 1, respectively.

  11. Here the solution of the discontinuous system is understood in the terms of Filippov [56]; the function \(\tanh(100\sigma )\) is used as a smooth approximation sign(σ).

  12. In the two-dimensional case, the departure of the trajectories is possible only to infinity, and in the three-dimensional case, the existence of limit periodic trajectories is possible [59].

  13. Regarding counterexamples with hidden attractors [41, 67] in 2011, R.E. Kalman wrote to the author of the article: “I was far too young and lacking technical mathematical knowledge to go more deeply into the matter.”

  14. In physical experiments, the system’s state leaves the unstable stationary mode due to external perturbations (an example is the impossibility of observing the upper position of the physical pendulum without additional stabilization). When analyzing the corresponding mathematical dynamic models, it is necessary to take into account that the unstable equilibrium states themselves do not fall into the basin of attraction of self-excited attractors. Therefore, in numerical modeling, the system state can remain in an unstable equilibrium state, and to study the dynamics in its vicinity, one has to choose the initial data that are different from the equilibrium state itself.

  15. In 2009, the plenary report [92] needed an example of applying the harmonic balance method to the Chua electronic circuit. For the parameters that I randomly selected, the attractor found in the Chua chain turned out to be weakly connected to the equilibrium states. A small additional control made it possible to disconnect the attractor found from the equilibrium states. In 2010, this example was finalized and presented at the IFAC conference “Periodic Control Systems” [40], and also published in the journal “Proceedings of the Academy of Sciences” [93]. Then, using the hidden attractor in the modified circuit, using the parameter continuation method, we managed to get rid of the additional control and get the hidden attractor in the classical Chua chain in 2011.

  16. This phase portrait with three Chua hidden attractors was selected for the cover of the International Journal of Bifurcation and Chaos in Applied Sciences and Engineering: https://www.worldscientific.com/na101/home/literatum/publisher/wspc/journals/content/ijbc/2017/ijbc.27.issue-12/ijbc.27.issue-12/20171218/ijbc.27.issue-12.cover.jpg. The initial data for visualizing hidden attractors in system (3.1): \(z = (9.2942,5.5013, - 31.4277)\), \(z = \pm (1.5179,0.2875, - 1.7414)\).

  17. Academician of the Academy of Sciences of the USSR (since 1946), rector of Moscow State University (1951–1973).

  18. Designing PLL systems for the analysis of stability and oscillations, various software simulators of electronic systems, Simulation Program with Integrated Circuit Emphasis (SPICE), are used by engineers, giving the illusion of virtual reality—observing real physical processes.

  19. In 1986, G.A. Leonov (as part of a team of researchers led by V.V. Shahgildyan) was awarded the USSR State Prize for these works.

  20. In 2008–2009 the coleaders were G.A. Leonov and V.A. Yakybovich (NSh-2387.2008.1), in 2014–2017 the coleader was G.A. Leonov (NSh-3384.2014.1, and NSh-8580.2016.1), and since 2018, the team of the Leading Scientific School of the Russian Federation has been headed by N.V. Kuznetsov (NSh-2858.2018.1 and NSh-2624.2020.1).

  21. Materials of the report “Hidden oscillations and stability of control systems. Theory and Applications” at the meeting of the Bureau of the DEEMCP on March 3, 2020: http://apcyb.spbu.ru/wp-content/uploads/2020-RAN-Bureau-DEEMCP-KuznetsovNV.pdf

REFERENCES

  1. M. Denny, “Watt steam governor stability,” Eur. J. Phys. 23, 339–351 (2002).

    Article  MathSciNet  Google Scholar 

  2. I. A. Vyshnegradskii, “About direct action regulators,” Izv. SPb. Tekhnol. Inst. 1, 21–62 (1877).

    Google Scholar 

  3. M. H. Léauté, “Mémoire sur les oscillations à longue période dans les machines actionnées par des moteurs hydrauliques et sur les moyens de prévenir ces oscillations,” J. l’ecole Polytech. 55, 1–126 (1885).

  4. N. E. Zhukovskii, Theory of Machine Control, Part 1 (Tipolitogr. Tov. I. N. Kushnerev, Moscow, 1909) [in Russian].

    Google Scholar 

  5. A. M. Lyapunov, The General Problem of Traffic Stability (Khar’k. Mat. Ob-va, Khar’kov, 1892) [in Russian].

    Google Scholar 

  6. H. Poincare, “Mémoire sur les courbes définies par une équations différentielle (II),” J. Math. 8, 251–296 (1882).

    MATH  Google Scholar 

  7. A. A. Andronov and S. E. Khaikin, Oscillation Theory (ONTI, Moscow, Leningrad, 1937) [in Russian].

    Google Scholar 

  8. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Oscillation Theory, 2nd ed. (Fizmatlit, Moscow, 1959) [in Russian].

    MATH  Google Scholar 

  9. Y. Rocard, Théorie des Oscillateurs (Revue Sci., Paris, 1941).

    MATH  Google Scholar 

  10. Ya. Z. Tsypkin, “A. A. Andronov and the theory of automatic control,” Avtom. Telemekh. 5, 5–10 (1974).

    Google Scholar 

  11. C. A. A. Bissel, “Andronov and the development of soviet control engineering,” IEEE Control Syst. Mag. 18, 56–62 (1998).

    Article  Google Scholar 

  12. A. A. Andronov and A. G. Maier, “Mises problem in the theory of direct regulation and the theory of point transformations of surfaces,” Dokl. Akad. Nauk SSSR 43, 58–60 (1944).

    Google Scholar 

  13. A. A. Andronov and A. G. Maier, “Vyshnegradsky’s problem in the theory of direct regulation,” Dokl. Akad. Nauk SSSR 47, 345–348 (1945).

    Google Scholar 

  14. “Academicians elected by the general assembly of the USSR Academy of Sciences on November 30, 1946,” Vestn. Akad. Nauk SSSR 1, 83 (1947).

  15. A. Kh. Gelig, “On the stability of motion of systems with a single equilibrium position,” Dokl. Akad. Nauk SSSR 147, 526–528 (1962).

    MathSciNet  Google Scholar 

  16. G. A. Leonov, “On the stability of nonlinear controlled systems with a non-unique equilibrium position,” Avtom. Telemekh. 10, 23–28 (1971).

    Google Scholar 

  17. A. Kh. Gelig, G. A. Leonov, and V. A. Yakubovich, Stability of Nonlinear Systems with a Non-Single State of Equilibrium (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  18. G. A. Leonov, N. V. Kuznetsov, M. A. Kiseleva, and R. N. Mokaev, “Global problems of differential inclusions: The problems of Kalman and Vyshnegradskii, Chua’s circuit,” Differ. Uravn. Protsessy Upravl. 4, 1–52 (2017).

    MATH  Google Scholar 

  19. "The accident at the Sayano-Shushenskaya hydroelectric station and the scientific and technical support for its restoration," Report on Meeting of the Presidium of the Russian Academy of Sciences. http://www.ras.ru/FStorage/Download.aspxıd=7d431c54-8c18-42c4-aeff-6dfc9ea18aa4.

  20. R. F. Ganiev, Nonlinear Resonances and Disasters. Reliability, Safety and Noiselessness (RKhD, Izhevsk, Moscow, 2013) [in Russian].

  21. G. A. Leonov, N. V. Kuznetsov, and E. P. Solovyeva, “A simple dynamical model of hydropower plant: Stability and oscillations,” IFAC-PapersOnLine 48, 656–661 (2015).

    Article  Google Scholar 

  22. G. A. Leonov, N. V. Kuznetsov, and E. P. Solov’eva, “Mathematical modeling of vibrations in turbogenerator sets of Sayano-Shushenskaya hydroelectric power station,” Dokl. Phys. 61, 55–60 (2016).

    Google Scholar 

  23. V. F. Zhuravlev and D. M. Klimov, “On certain dynamic problems of a rigid body with dry friction,” Vestn. Nizhegor. Univ. im. N. I. Lobachevskogo 4-2, 133–134 (2011).

  24. I. G. Goryacheva, Friction Mechanics (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  25. V. I. Kolesnikov, P. G. Ivanochkin, A. V. Chelokh’yan, and E. A. Lugovoi, Friction and Wear of Machine Units and Mechanisms (Rostov. Gos. Univ. Putei Soobshch., Rostov-on-Don, 2000) [in Russian].

    Google Scholar 

  26. E. A. Fedosov, K. S. Kolesnikov, and G. G. Sebryakov, Engineering, Encyclopedia, Vol. 1-4: Automatic Control (Mashinostroenie, Moscow, 2000) [in Russian].

  27. S. N. Vasil’ev, A. K. Zherlov, E. A. Fedosov, and B. E. Fedunov, Intelligent Control of Dynamic Systems (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  28. F. L. Chernous’ko, I. M. Anan’evskii, and S. A. Reshmin, Non-Linear Mechanical Systems Control Methods (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  29. N. P. Demenkov and E. A. Mikrin, Control in Technical Systems (MGTU im. N. E. Baumana, Moscow, 2017) [in Russian].

  30. V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electro-Mechanical Systems (CRC, Boca Raton, FL, 2017).

    Book  Google Scholar 

  31. B. R. Andrievskii, A. A. Bobtsov, and A. L. Fradkov, Methods of Analysis and Synthesis of Nonlinear Control Systems (IKI, Moscow, Izhevsk, 2018) [in Russian].

    Google Scholar 

  32. B. T. Polyak, M. V. Khlebnikov, and L. B. Rapoport, The Mathematical Theory of Automatic Control (LENAND, Moscow, 2019) [in Russian].

    Google Scholar 

  33. D. A. Novikov, Control Theory, Additional Chapters (LENAND, Moscow, 2019) [in Russian].

    Google Scholar 

  34. A. B. Kurzhanski and A. N. Daryin, Dynamic Programming for Impulse Feedback and Fast Controls: The Linear Systems Case (Springer, London, 2020).

    Book  MATH  Google Scholar 

  35. L. I. Mandel’shtam and N. D. Papaleksi, “On the phenomena of resonance of the N-th kind,” Zh. Tekh. Fiz. 2, 775–811 (1932).

    Google Scholar 

  36. E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Ueda, N. Akamatsu, and C. Hayashi, “Computer simulations and non-periodic oscillations,” Trans. IEICE Jpn. A 56, 218–255 (1973).

    Google Scholar 

  38. T. Matsumoto, L. Chua, and M. Komuro, “The double scroll,” IEEE Trans. Circuits Syst. 32, 797–818 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  39. G. A. Leonov and N. V. Kuznetsov, “Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 23, 1330002 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  40. N. V. Kuznetsov, G. A. Leonov, and V. I. Vagaitsev, “Analytical-numerical method for attractor localization of generalized Chua’s system,” IFAC Proc. 43 (11), 29–33 (2010).

  41. V. O. Bragin, V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, “Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits,” J. Comput. Syst. Sci. Int. 50, 511 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  42. G. A. Leonov, N. V. Kuznetsov, and T. N. Mokaev, “Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion,” Eur. Phys. J. Spec. Top. 224, 1421–1458 (2015).

    Article  Google Scholar 

  43. N. V. Kuznetsov, “Analytical and numerical methods for the analysis of hidden oscillations,” Doctoral (Phys. Math.) Dissertation (SPb. State Univ., St. Petersburg, 2016).

  44. H. Barkhausen, Textbook of Electron Tubes and their Technical Applications (S. Hirzel, Germany, 1935).

    Google Scholar 

  45. N. V. Kuznetsov, “Theory of hidden oscillations,” Plenary Lecture at the 11th Russian Multiconference on Control Problems, St. Petersburg, 2018.

  46. N. V. Kuznetsov, “Theory of hidden oscillations,” Plenary Lecture at the 5th IFAC Conference on Analysis and Control of Chaotic Systems, Eindhoven, 2018.

  47. N. V. Kuznetsov, “Theory of hidden oscillations,” in Proceedings of the 13th All-Russia Workshop on Control Problems VSPU-2019 (IPU, Moscow, 2019), pp. 103–107.

  48. A. I. Lur’e and V. N. Postnikov, “On the theory of stability of controlled systems,” Prikl. Mat. Mekh. 8, 246–248 (1944).

    MATH  Google Scholar 

  49. E. A. Barbashin and N. N. Krasovskii, “On the stability of movement in general,” Dokl. Akad. Nauk SSSR 86, 453–459 (1952).

    Google Scholar 

  50. R. E. Kalman, “Physical and mathematical mechanisms of instability in nonlinear automatic control systems,” Trans. ASME 79, 553–566 (1957).

    MathSciNet  Google Scholar 

  51. G. A. Leonov, D. V. Ponomarenko, and V. B. Smirnova, Frequency-Domain Methods for Nonlinear Analysis. Theory and Applications (World Scientific, Singapore, 1996).

    Book  MATH  Google Scholar 

  52. N. E. Barabanov, “On Kalman problem,” Sib. Mat. Zh. 29, 3–11 (1988).

    MATH  Google Scholar 

  53. W. P. Heath,  J. Carrasco, and M. de la Sen, “Second-order counterexamples to the discrete-time Kalman conjecture,” Automatica 60, 140–144 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  54. N. V. Kuznetsov, O. A. Kuznetsova, D. V. Koznov, R. N. Mokaev, and B. R. Andrievsky, “Counterexamples to the Kalman conjectures,” IFAC-PapersOnLine 51 (33), 138–143 (2018).

    Article  Google Scholar 

  55. N. V. Kuznetsov, O. A. Kuznetsova, T. N. Mokaev, R. N. Mokaev, M. V. Yuldashev, and R. V. Yuldashev, “Coexistence of hidden attractors and multistability in counterexamples to the Kalman conjecture,” IFAC-PapersOnLine 52 (16), 7–12 (2019).

    Article  Google Scholar 

  56. A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  57. M. A. Aizerman and E. S. Pyatnitskii, “Fundamentals of the theory of discontinuous systems. I,” Avtom. Telemekh. 7, 33–47 (1974).

    MATH  Google Scholar 

  58. M. A. Aizerman, “On a problem concerning the stability “in the large” of dynamical systems,” Usp. Mat. Nauk 4, 187–188 (1949).

    MathSciNet  MATH  Google Scholar 

  59. V. A. Pliss, Certain Problems in the Theory of Stability of Motion in the Whole (Leningrad Univ. Press, 1958).

    Google Scholar 

  60. N. N. Krasovskii, “Motion stability theorems defined by a system of two equations,” Prikl. Mat. Mekh. 16, 547–554 (1952).

    Google Scholar 

  61. L. Markus and H. Yamabe, “Global stability criteria for differential systems,” Osaka Math. J. 12, 305–317 (1960).

    MathSciNet  MATH  Google Scholar 

  62. G. Meisters, “Biography of the Markus-Yamabe conjecture,” (1996). http://www.math.unl.edu/ gmeisters1/papers/HK1996.pdf.

  63. B. van der Pol, “On relaxation-oscillations,” Philos. Mag. J. Sci. 7, 978–992 (1926).

    Article  MATH  Google Scholar 

  64. N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics (Akad. Nauk USSR, Kiev, 1937; Princeton Univ. Press, Princeton, 1947).

  65. V. A. Besekerskii and E. P. Popov, Theory of Automatic Control Systems (Fizmatlit, Moscow, 1966) [in Russian].

    Google Scholar 

  66. H. K. Khalil, Nonlinear Systems (Prentice Hall, NJ, 2002).

    MATH  Google Scholar 

  67. G. A. Leonov and N. V. Kuznetsov, “Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems,” Dokl. Math. 84, 475–481 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  68. N. E. Barabanov, A. Kh. Gelig, G. A. Leonov, A. L. Likhtarnikov, A. S. Matveev, V. B. Smirnova, and A. L. Fradkov, “The frequency theorem (the Yakubovich-Kalman lemma) in control theory,” Autom. Remote Control 10 (9), 3–40 (1996).

    MathSciNet  MATH  Google Scholar 

  69. Ya. Z. Tsypkin, Theory of Relay Systems of Automatic Control (Gostekhizdat, Moscow, 1955) [in Russian].

    MATH  Google Scholar 

  70. N. V. Kuznetsov, R. N. Mokaev, E. D. Akimova, and I. M. Boiko, “Harmonic balance method, Tsypkin locus, and LPRS: Comparison and counterexamples,” in Proceedings of European Control Conference, St. Petersburg,2020, pp. 781–786.

  71. G. A. Leonov, V. O. Bragin, and N. V. Kuznetsov, “Algorithm for constructing counterexamples to the Kalman problem,” Dokl. Math. 82, 540–542 (2010).

    Article  MATH  Google Scholar 

  72. N. V. Kuznetsov and G. A. Leonov, “Perron’s counterexample in the discrete case,” Izv. RAEN, Differ. Uravn. 5, 71 (2001).

    Google Scholar 

  73. G. A. Leonov and N. V. Kuznetsov, “Time-varying linearization and the Perron effects,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 17, 1079–1107 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  74. N. V. Kuznetsov, Stability and Oscillations of Dynamical Systems: Theory and Applications (Jyväskylä Univ. Press, Jyväskylä, 2008).

    Google Scholar 

  75. N. V. Kuznetsov and G. A. Leonov, “Strange attractors and classical stability theory: Stability, instability, Lyapunov exponents and chaos,” in Handbook of Applications of Chaos Theory, Ed. by Ch. H. Skiadas and C. Skiadas (Chapman and Hall/CRC, Routledge, 2016), pp. 105–134.

  76. O. Perron, “Die Stabilitatsfrage bei Differentialgleichungen,” Math. Zeitschr. 32, 702–728 (1930).

    MathSciNet  MATH  Google Scholar 

  77. M. V. Keldysh, “About non-linear dampers,” Tr. TsAGI. 557, 26–37 (1944).

    Google Scholar 

  78. G. A. Leonov and N. V. Kuznetsov, “On the Keldysh problem of flutter suppression,” AIP Conf. Proc. 1959, 020002 (2018).

    Article  Google Scholar 

  79. G. A. Leonov and N. V. Kuznetsov, “On flutter suppression in the Keldysh model,” Dokl. Phys. 63, 366–370 (2018).

    Article  Google Scholar 

  80. E. V. Kudryashova, N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, and R. N. Mokaev, “Harmonic balance method and stability of discontinuous systems,” in Dynamics and Control of Advanced Structures and Machines, Ed. by V. P. Matveenko, M. Krommer, A. Belyaev, and H. Irschik (Springer Nature, Switzerland, 2019), pp. 99–107.

    Google Scholar 

  81. G. S. Byushgens, S. L. Chernyshev, M. G. Goman, et al., Aerodynamics, Stability and Controllability of Supersonic Aircraft (Nauka, Moscow, 2016) [in Russian].

    Google Scholar 

  82. M. A. Pogosyan, Aircraft Design (Innov. Mashinostr., Moscow, 2008) [in Russian].

  83. T. Lauvdal, R. M. Murray, and T. I. Fossen, “Stabilization of integrator chains in the presence of magnitude and rate saturations: A gain scheduling approach,” in Proceedings of the IEEE Control and Decision Conference, San Diego,1997, Vol. 4, pp. 4404–4405.

  84. S. L. Chernyshev, “Modern problems of aircraft building in applied problems of aerohydromechanics,” in Proceedings of the International Conference on Mechanics, 8th Polyakhov’s Readings, St. Petersburg,2018. https://events.spbu.ru/eventsContent/events/2018/polyakhov/tsagi.pdf.

  85. B. R. Andrievskii, N. V. Kuznetsov, and G. A. Leonov, “Methods for suppressing nonlinear oscillations in astatic auto-piloted aircraft control systems,” J. Comput. Syst. Sci. Int. 56, 455 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  86. G. A. Leonov, B. R. Andrievskii, N. V. Kuznetsov, and A. Yu. Pogromskii, “Control of aircraft with AW-compensation,” Differ. Uravn. Protsessy Upravl. 3, 1–36 (2012).

    MATH  Google Scholar 

  87. G. A. Leonov, N. V. Kuznetsov, and A. Yu. Pogromskii, “Stability domain analysis of an antiwindup control system for an unstable object,” Dokl. Math. 86, 587–590 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  88. B. R. Andrievsky, N. V. Kuznetsov, G. A. Leonov, and A. Yu. Pogromsky, “Hidden oscillations in aircraft flight control system with input saturation,” IFAC Proc. Vols. 46 (12), 75–79 (2013).

  89. B. R. Andrievsky, E. V. Kudryashova, N. V. Kuznetsov, and O. A. Kuznetsova, “Aircraft wing rock oscillations suppression by simple adaptive control,” Aerospace Science and Technology (2020). https://doi.org/10.1016/j.ast.2020.106049

  90. L. O. Chua, “A zoo of strange attractors from the canonical Chua’s circuits,” in Proceedings of the IEEE 35th Midwest Symposium on Circuits and Systems, Washington, DC,1992, Cat. No. 92CH3099-9, Vol. 2, pp. 916–926.

  91. E. Bilotta and P. Pantano, A Gallery of Chua Attractors (World Scientific, Singapore, 2008).

    Book  MATH  Google Scholar 

  92. G. A. Leonov and N. V. Kuznetsov, “Localization of hidden oscillations in dynamical systems,” Plenary Lecture on 4th International Conference on Physics and Control, Catania, 2009. http://www.math.spbu.ru/user/leonov/publications/2009-PhysCon-Leonov-plenary-hidden-oscillations.pdf#page=21.

  93. G. A. Leonov, V. I. Vagaitsev, and N. V. Kuznetsov, “Algorithm for localizing Chua attractors based on the harmonic linearization method,” Dokl. Math. 82, 663–666 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  94. N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, and V. I. Vagaytsev, “Hidden attractor in Chua’s circuits,” in ICINCO 2011, Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics,2011, Vol. 1, pp. 279–283.

  95. G. A. Leonov, N. V. Kuznetsov, and V. I. Vagaitsev, “Localization of hidden Chua’s attractors,” Phys. Lett. A 375, 2230–2233 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  96. N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, T. N. Mokaev, and N. V. Stankevich, “Hidden attractors localization in Chua circuit via the describing function method,” IFAC-PapersOnLine 50, 2651–2656 (2017).

    Article  Google Scholar 

  97. N. V. Stankevich, N. V. Kuznetsov, G. A. Leonov, and L. Chua, “Scenario of the birth of hidden attractors in the Chua circuit,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 27, 1730038 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  98. N. V. Kuznetsov and G. A. Leonov, “Hidden attractors in dynamical systems: Systems with no equilibria, multistability and coexisting attractors,” IFAC Proc. Vols. 47, 5445–5454 (2014).

  99. M. A. Kiseleva, E. V. Kudryashova, N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Hidden and self-excited attractors in Chua circuit: Synchronization and SPICE simulation,” Int. J. Parall., Emerg. Distrib. Syst. 33, 513–523 (2018).

    Article  Google Scholar 

  100. A. Sommerfeld, “Beitrage zum dynamischen Ausbau der Festigkeitslehre,” Zeitschr. Vereins deutsch. Ingen. 46, 391–394 (1902).

    Google Scholar 

  101. I. I. Blekhman, “Self-synchronization of vibrators of some vibrating machines,” Inzh. Sb. 16, 49–72 (1953).

    Google Scholar 

  102. M. A. Kiseleva, N. V. Kuznetsov, and G. A. Leonov, “Hidden attractors in electromechanical systems with and without equilibria,” IFAC-PapersOnLine 49 (14), 51–55 (2016).

    Article  Google Scholar 

  103. M. Kiseleva, N. Kondratyeva, N. Kuznetsov, and G. Leonov, “Hidden oscillations in electromechanical systems,” in Dynamics and Control of Advanced Structures and Machines, Ed. by H. Irschik, A. Belyaev, and M. Krommer (Springer, Cham, 2018), pp. 119–124.

    Google Scholar 

  104. I. I. Blekhman, D. A. Indeitsev, and A. L. Fradkov, “Slow motions in systems with inertially excited vibrations,” IFAC Proc. Vols. 40 (14), 126–131 (2007).

  105. A. Fradkov, O. Tomchina, and D. Tomchin, “Controlled passage through resonance in mechanical systems,” J. Sound Vibrat. 330, 1065–1073 (2011).

    Article  Google Scholar 

  106. N. Mihajlovic, A. A. van Veggel, N. van de Wouw, and H. Nijmeijer, “Analysis of friction-induced limit cycling in an experimental drill-string system,” J. Dyn. Syst. Meas. Control 126, 709–720 (2004).

    Article  Google Scholar 

  107. G. A. Leonov, N. V. Kuznetsov, M. A. Kiseleva, E. P. Solovyeva, and A. M. Zaretskiy, “Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor,” Nonlin. Dyn. 77, 277–288 (2014).

    Article  Google Scholar 

  108. M. A. Kiseleva, N. V. Kondratyeva, N. V. Kuznetsov, G. A. Leonov, and E. P. Solovyeva, “Hidden periodic oscillations in drilling system driven by induction motor,” IFAC Proc. Vols. 47, 5872–5877 (2014).

  109. M. A. Kiseleva, N. V. Kondratyeva, N. V. Kuznetsov, and G. A. Leonov, “Hidden oscillations in drilling systems with salient pole synchronous motor,” IFAC-PapersOnLine 48, 700–705 (2015).

    Article  Google Scholar 

  110. O. A. Ladyzhenskaya, “On finding minimal global attractors for the Navier–Stokes equations and other partial differential equations,” Usp. Mat. Nauk 42, 25–60 (1987).

    MathSciNet  Google Scholar 

  111. G. A. Leonov and V. Reitmann, Attraktoreingrenzung fur Nichtlineare Systeme (Teubner, Stuttgart, Leipzig, 1987).

    Book  MATH  Google Scholar 

  112. G. A. Leonov and N. V. Kuznetsov, “On differences and similarities in the analysis of Lorenz, Chen, and Lu systems,” Appl. Math. Comput. 256, 334–343 (2015).

    MathSciNet  MATH  Google Scholar 

  113. D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov, and A. Prasad, “Hidden attractors in dynamical systems,” Phys. Rep. 637, 1–50 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  114. N. V. Kuznetsov, G. A. Leonov, T. N. Mokaev, A. Prasad, and M. D. Shrimali, “Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system,” Nonlin. Dyn. 92, 267–285 (2018).

    Article  MATH  Google Scholar 

  115. G. Chen, N. V. Kuznetsov, G. A. Leonov, and T. N. Mokaev, “Hidden attractors on one path: Glukhovsky-Dolzhansky, Lorenz, and Rabinovich systems,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 27, 1750115 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  116. G. A. Leonov, N. V. Kuznetsov, and V. I. Vagaitsev, “Hidden attractor in smooth Chua systems,” Phys. D: Nonlin. Phenom. 241, 1482–1486 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  117. M.-F. Danca and N. V. Kuznetsov, “Hidden chaotic sets in a hopfield neural system,” Chaos, Solitons Fractals 103, 144–150 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  118. M.-F. Danca, N. Kuznetsov, and G. Chen, “Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system,” Nonlin. Dynam. 88, 791–805 (2017).

    Article  MathSciNet  Google Scholar 

  119. G. A. Leonov, N. V. Kuznetsov, and T. N. Mokaev, “Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity,” Commun. Nonlin. Sci. Numer. Simul. 28, 166–174 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  120. A. L. Fradkov and R. J. Evans, “Control of chaos: Methods and applications in engineering,” Ann. Rev. Control 29, 33–56 (2005).

    Article  Google Scholar 

  121. A. L. Fradkov, Cybernetic Physics: Principles and Examples (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  122. O. E. Rössler, “Continuous chaos – four prototype equations,” Ann. N. Y. Acad. Sci. 316, 376–392 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  123. N. V. Kuznetsov and T. N. Mokaev, “Numerical analysis of dynamical systems: Unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension,” J. Phys.: Conf. Ser. 1205, 012034 (2019).

    Google Scholar 

  124. N. V. Kuznetsov, T. N. Mokaev, E. V. Kudryashova, O. A. Kuznetsova, and M.-F. Danca, “On lower-bound estimates of the Lyapunov dimension and topological entropy for the Rössler systems,” IFAC-PapersOnLine 52 (18), 97–102 (2019).

    Article  Google Scholar 

  125. B. T. Polyak, “Stabilizing chaos with predictive control,” Autom. Remote Control 66, 1791 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  126. P. R. Sharma, M. D. Shrimali, A. Prasad, N. V. Kuznetsov, and G. A. Leonov, “Control of multistability in hidden attractors,” Eur. Phys. J. Spec. Top. 224, 1485–1491 (2015).

    Article  Google Scholar 

  127. P. R. Sharma, M. D. Shrimali, A. Prasad, N. V. Kuznetsov, and G. A. Leonov, “Controlling dynamics of hidden attractors,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 25, 1550061 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  128. G. A. Leonov, M. M. Shumafov, and N. V. Kuznetsov, “Delayed feedback stabilization of unstable equilibria,” IFAC Proc. Vols. 19, 6818–6825 (2014).

  129. G. A. Leonov, M. M. Shumafov, and N. V. Kuznetsov, “Delayed feedback stabilization and the Huijberts-Michiels-Nijmeijer problem,” Differ. Equat. 52, 1707–1731 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  130. G. A. Leonov, I. Adan, B. R. Andrievsky, N. V. Kuznetsov, and A. Yu. Pogromsky, “Nonlinear problems in control of manufacturing systems,” IFAC Proc. Vols. 46 (9), 33–42 (2013).

  131. B. R. Andrievskii, N. V. Kuznetsov, G. A. Leonov, and A. Yu. Pogromskii, “Observed-based distributed control of production line,” Mekhatron. Avtomatiz. Upravl., No. 5, 13–25 (2014).

  132. A. L. Fradkov, Network Control Issues (IKI, Moscow, Izhevsk, 2015) [in Russian].

    Google Scholar 

  133. D. Dudkowski, N. V. Kuznetsov, and T. N. Mokaev, “Chimera states and hidden attractors,” Phys. Life Rev. 28, 131–133 (2019).

    Article  Google Scholar 

  134. N. V. Kuznetsov, “The Lyapunov dimension and its estimation via the Leonov method,” Phys. Lett. A 380, 2142–2149 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  135. N. V. Kuznetsov, T. A. Alexeeva, and G. A. Leonov, “Invariance of Lyapunov exponents and lyapunov dimension for regular and irregular linearizations,” Nonlin. Dyn. 85, 195–201 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  136. N. V. Kuznetsov and V. Reitmann, Attractor Dimension Estimates for Dynamical Systems: Theory and Computation (Dedicated to Gennady Leonov) (Springer, Cham, 2021).

  137. A. S. Matveev and A. Yu. Pogromsky, “Observation of nonlinear systems via finite capacity channels. pt. II. Restoration entropy and its estimates,” Automatica 103, 189–199 (2019).

    Article  MATH  Google Scholar 

  138. V. I. Arnol’d, V. S. Afraimovich, Yu. S. Il’yashenko, and L. P. Shil’nikov, Bifurcation Theory (VINITI, Moscow, 1986) [in Russian].

    Google Scholar 

  139. A. A. Andronov and L. S. Pontryagin, “Rough systems,” Dokl. Akad. Nauk SSSR 14, 247–250 (1937).

    Google Scholar 

  140. N. N. Bautin, “On the number of limit cycles that appear when coefficients change from an equilibrium state such as a focus or center,” Mat. Sb. 30 (72), 181–196 (1952).

    Google Scholar 

  141. N. V. Kuznetsov and G. A. Leonov, “Lyapunov quantities, limit cycles and strange behavior of trajectories in two-dimensional quadratic systems,” J. Vibroeng. 10, 460–467 (2008).

    Google Scholar 

  142. G. A. Leonov, N. V. Kuznetsov, and E. V. Kudryashova, “A direct method for calculating Lyapunov quantities of two-dimensional dynamical systems,” Proc. of the Steklov Institute of Math. (Tr. Inst. Mat. Mekh. UrO RAN), 272 (SUPPL 1), 119–127 (2011).

    Google Scholar 

  143. G. A. Leonov, N. V. Kuznetsov, and E. V. Kudryashova, “Local methods for dynamic system cycle investigation,” Plenary Lecture on Pyatnitskiy 10th International Workshop on Stability and Oscillations of Nonlinear Control Systems, Moscow, 2008.

  144. V. I. Arnold, Experimental Mathematics (Moscow, FAZIS, 2005).

  145. N. V. Kuznetsov, O. A. Kuznetsova, and G. A. Leonov, “Visualization of four normal size limit cycles in two-dimensional polynomial quadratic system,” Differ. Equat. Dyn. Syst. 21, 29–34 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  146. I. G. Petrovskii and E. M. Landis, “On the number of limit cycles of the equation dy/dx = P(x, y)/Q(x, y), where P and Q are polynomials of the second degree,” Mat. Sb. 37 (79), 209–250 (1955).

    MathSciNet  Google Scholar 

  147. F. Tricomi, “Integrazione di differeziale presentasi in electrotechnica,” Ann. Roma Schuola Normale Super. Pisa 2, 1–20 (1933).

    Google Scholar 

  148. E. A. Barbashin and V. A. Tabueva, Dynamic Systems with a Cylindrical Phase Space (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  149. L. N. Belyustina, V. V. Bykov, K. G. Kiveleva, and V. D. Shalfeev, “On the size of the PLL locking system with a proportional-integrating filter,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 13, 561–567 (1970).

    Google Scholar 

  150. B. I. Shakhtarin, Analysis of System Synchronization by Averaging (Radio Svyaz’, Moscow, 1999) [in Russian].

    Google Scholar 

  151. V. V. Matrosov and V. D. Shalfeev, Nonlinear Dynamics of Phase Synchronization Systems (Nizhegor. Univ., Nizh. Novgorod, 2013) [in Russian].

    Google Scholar 

  152. K. D. Aleksandrov, N. V. Kuznetsov, G. A. Leonov, N. Neittaanmaki, M. V. Yuldashev, and R. V. Yuldashev, “Computation of the lock-in ranges of phase-locked loops with PI filter,” IFAC-PapersOnLine 49 (14), 36–41 (2016).

    Article  Google Scholar 

  153. M. V. Kapranov, “Capture phase locked loop,” Radiotekhnika 11 (12), 37–52 (1956).

    Google Scholar 

  154. R. E. Best, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Nonlinear analysis of phase-locked loop based circuits,” in Discontinuity and Complexity in Nonlinear Physical Systems (Springer, Cham, 2014), Vol. 6, pp. 169–192.

    MATH  Google Scholar 

  155. E. V. Kudryashova, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Nonlinear analysis of PLL by the harmonic balance method: Limitations of the pull-in range estimation,” IFAC-PapersOnLine 50, 1451–1456 (2017).

    Article  Google Scholar 

  156. G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Hold-in, pull-in, and lock-in ranges of PLL circuits: Rigorous mathematical definitions and limitations of classical theory,” IEEE Trans. Circuits Syst. I: Regular Papers 62, 2454–2464 (2015).

    Article  MathSciNet  Google Scholar 

  157. G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE,” Commun. Nonlin. Sci. Numer. Simul. 51, 39–49 (2017).

    Article  Google Scholar 

  158. G. Bianchi, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Limitations of PLL simulation: Hidden oscillations in MATLAB and SPICE,” in Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems and Workshops ICUMT,2015, Brno, 2016, pp. 79–84.

  159. G. Bianchi, N. V. Kuznetsov, G. A. Leonov, S. M. Seledzhi, M. V. Yuldashev, and R. V. Yuldashev, “Hidden oscillations in SPICE simulation of two-phase Costas loop with non-linear VCO,” IFAC-PapersOnLine 49 (14), 45–50 (2016).

    Article  Google Scholar 

  160. S. J. Goldman, Phase-Locked Loops Engineering Handbook for Integrated Circuits (Artech House, Boston, 2007).

    Google Scholar 

  161. G. A. Leonov, V. Reitmann, and V. B. Smirnova, Nonlocal Methods for Pendulum-like Feedback Systems (Teubner, Stuttgart, Leipzig, 1992).

    Book  MATH  Google Scholar 

  162. G. A. Leonov, I. M. Burkin, and A. I. Shepelyavy, Frequency Methods in Oscillation Theory (Kluwer, Dordretch, 1996).

    Book  Google Scholar 

  163. G. A. Leonov and S. M. Seledzhi, Phase Synchronization Systems in Analog and Digital Circuitry (Nevskii Dialekt, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  164. G. A. Leonov, N. V. Kuznetsov, and S. M. Seledzhi, “Automation control – theory and practice,” in Nonlinear Analysis and Design of Phase-Locked Loops (InTech, London, 2009), pp. 89–114.

    Book  Google Scholar 

  165. G. A. Leonov and N. V. Kuznetsov, Nonlinear Mathematical Models of Phase-Locked Loops. Stability and Oscillations (Cambridge Sci., Cottenham, 2014).

  166. N. V. Kuznetsov, “The development of stability theory for differential inclusions in G. A. Leonova and its application for stability analysis of angular orientation systems,” in Proceedings of the Korolev’s Readings (Moscow, 2019).

  167. N. V. Kuznetsov, M. Y. Lobachev, M. V. Yuldashev, R. V. Yuldashev, E. V. Kudryashova, O. A. Kuznetsova, E. N. Rosenwasser, and S. M. Abramovich, The birth of the global stability theory and the theory of hidden oscillations. In Proc. of European Control Conf. St. Petersburg, P. 769–774 (2020).

  168. D. Abramovitch, “Analysis and design of a third order phase-lock loop,” in Proceedings of the Conference on 21st Century Military Communications—What’s Possible?, San Diego,1988, pp. 455–459.

  169. S. Yu. Zheltov, K. K. Veremeenko, N. V. Kim, D. A. Kozorez, M. N. Krasilshchikov, G. G. Sebryakov, K. I. Sypalo, and A. I. Chernomorskiy, Modern information technologies in the tasks of navigation and guidance of unmanned maneuverable aerial vehicles (Fizmatlit, Moscow, 2009) [in Russian].

  170. E. D. Kaplan and C. J. Hegarty, Understanding GPS: Principles and Applications (Artech House, Boston, 2006).

    Google Scholar 

  171. I. A. Kalyaev, I. I. Levin, E. A. Semernikov, and V. I. Shmoilov, Reconfigurable Multi-Pipeline Computing Structures (YuNTs RAN, Rostov-on-Don, 2008) [in Russian].

  172. S. I. Vol’skii, N. V. Kuznetsov, D. A. Sorokin, M. V. Yuldashev, and R. V. Yuldashev, “The choice of the frequency of the output voltage of the magnetoelectric generator of the power supply system of aircraft with electric traction,” in Proceedings of the International Conference on Electrical Complexes and Systems, Ufa,2020. http://www.icoecs.com/.

  173. G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Analytical method for computation of phase-detector characteristic,” IEEE Trans. Circuits Syst. II: Express Briefs 59, 633–647 (2012).

    Article  Google Scholar 

  174. G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Nonlinear dynamical model of Costas loop and an approach to the analysis of its stability in the large,” Signal Process. 108, 124–135 (2015).

    Article  Google Scholar 

  175. R. E. Best, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Simulation of analog Costas loop circuits,” Int. J. Autom. Comput. 11, 571–579 (2014).

    Article  MATH  Google Scholar 

  176. R. E. Best, N. V. Kuznetsov, O. A. Kuznetsova, et al., “A short survey on nonlinear models of the classic Costas loop: Rigorous derivation and limitations of the classic analysis,” in Proceedings of the American Control Conference (IEEE, Chicago, 2015), Art. No. 7170912, pp. 1296–1302.

  177. G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Computation of the phase detector characteristic of classical PLL,” Dokl. Math. 91, 246–249 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  178. G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Mathematical models of the Costas loop,” Dokl. Math. 92, 594–598 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  179. G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Computation of the phase detector characteristic of a QPSK Costas loop,” Dokl. Math. 93, 348–353 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  180. N. V. Kuznetsov, M. V. Yuldashev, R. V. Yuldashev, M. V. Blagov, E. V. Kudryashova, O. A. Kuznetsova, and T. N. Mokaev, “Comments on Van Paemel’s mathematical model of charge-pump phase-locked loop,” Differ. Uravn. Protsessy Upravl. 1, 109–120 (2019). https://diffjournal.spbu.ru/pdf/19107-jdecp-kuznetsov.pdf

    MathSciNet  MATH  Google Scholar 

  181. R. E. Best, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Tutorial on dynamic analysis of the Costas loop,” IFAC Ann. Rev. Control 42, 27–49 (2016).

    Article  Google Scholar 

  182. N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “A short survey on nonlinear models of QPSK Costas loop,” IFAC-PapersOnLine 50, 6525–6533 (2017).

    Article  Google Scholar 

  183. N. V. Kuznetsov, M. Yu. Lobachev, M. V. Yuldashev, and R. V. Yuldashev, “On the Gardner problem for the phase-locked loops,” Dokl. Math. 100, 568–570 (2019).

    Article  MATH  Google Scholar 

  184. G. A. Leonov and N. V. Kuznetsov, “Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems,” IFAC Proc. Vols. 44, 2494–2505 (2011).

  185. N. V. Kuznetsov, “Plenary lecture “Hidden attractors in fundamental problems and engineering models. A short survey”,” Lect. Notes Electric. Eng. 371, 13–25 (2016).

    Google Scholar 

  186. N. V. Kuznetsov, “Plenary lecture "Theory of hidden oscillations and stability of control systems,” in Proceedings of the International Conference on Stability, Control, Differential Games, Devoted to the 95th Anniversary of Academician N. N. Krasovskii (Yekaterinburg, 2019), pp. 201–204.

  187. N. V. Kuznetsov, “Theory of hidden oscillations and the stability of control systems,” in Proceedings of the 12th All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics (Ufa, 2019), Vol. 1, pp. 46–48. www.youtube.com/watch?v=843m-rI5nTM.

  188. N. V. Kuznetsov, “Control of oscillations in phase locked loop systems,” in Proceedings of the 12th Multiconference on Control Problems, Divnomorskoe,2019, Vol. 3, pp. 21–26.

Download references

Funding

This work was supported by the Russian Science Foundation (project 19-41-02002, 2019-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kuznetsov.

Additional information

Dedicated to the memory of Corresponding Member of the Russian Academy of Sciences Gennady Alekseevich Leonov

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, N.V. Theory of Hidden Oscillations and Stability of Control Systems. J. Comput. Syst. Sci. Int. 59, 647–668 (2020). https://doi.org/10.1134/S1064230720050093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230720050093

Navigation